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	Definition of Core elements

	CORE elements are those which are essential for the clinical management, staging or prognosis of the cancer. These elements will either have evidentiary support at Level III-2 or above (based on prognostic factors in the National Health and Medical Research Council levels of evidence1). In rare circumstances, where level III-2 evidence is not available an element may be made a CORE element where there is unanimous agreement by the Dataset Authoring Committee (DAC). 

Molecular and immunohistochemical testing is a growing feature of cancer reporting. However, in many parts of the world this type of testing is limited by the available resources. In order to encourage the global adoption of ancillary tests for patient benefit, International Collaboration on Cancer Reporting (ICCR) includes the most relevant ancillary testing in ICCR Datasets as CORE elements, especially when they are necessary for the diagnosis. Where the technical capability does not yet exist, laboratories may consider temporarily using these data elements as NON-CORE items.

The summation of all CORE elements is considered to be the minimum reporting standard for a specific cancer.

Reference
1	Merlin T, Weston A and Tooher R (2009). Extending an evidence hierarchy to include topics other than treatment: revising the Australian 'levels of evidence'. BMC Med Res Methodol 9:34. 

	Definition of Non-core elements
	NON-CORE elements are those which are unanimously agreed should be included in the dataset but are not supported by level III-2 evidence. These elements may be clinically important and recommended as good practice but are not yet validated or regularly used in patient management. 

Key information other than that which is essential for clinical management, staging or prognosis of the cancer such as macroscopic observations and interpretation, which are fundamental to the histological diagnosis and conclusion e.g., macroscopic tumour details, may be included as either CORE or NON-CORE elements by consensus of the DAC.
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	Element name
	Values
	Commentary
	Implementation notes

	Histological Assessment Reporting Guide

	Scope of this dataset section
Histological Assessment Reporting Guide
	This dataset section has been developed for the histological assessment of benign and malignant primary tumours of the central nervous system (CNS) and its coverings, as well as tumours from those structures of the peripheral nervous system immediately adjacent to the CNS. This dataset applies to both biopsy and resection specimens of adult and paediatric CNS tumours. Haematological lesions involving the CNS and germ cell tumours are not covered in detail as these are not the primary focus of the CNS dataset. Most sarcomas are not included and are covered by separate International Collaboration on Cancer Reporting (ICCR) datasets.1,2 Secondary tumours of the CNS (for example, metastatic tumours from carcinomas, sarcomas or melanomas in other organs) are not covered in this dataset. Tumours of the pituitary gland are included as the majority of these tumours are reported by neuropathologists worldwide.

This dataset section on histological assessment should be used in conjunction with the ICCR dataset sections on Molecular information and the Integrated final diagnosis, where appropriate. 

The 2nd edition of this dataset incorporates the World Health Organisation (WHO) Classification of Tumours of the CNS, 5th edition (CNS5), 2021.3 The ICCR dataset includes 5th edition Corrigenda, July 2024.4 A complete diagnosis of CNS tumours should ideally conform to the final integrated diagnoses in the 2021 WHO CNS5 Tumour Classification, which for most tumour types now requires integration of elements from histological and ancillary analyses. Nonetheless, it is realised that some diagnoses may not fit precisely within existing diagnostic categories.5 
References
1	International Collaboration on Cancer Reporting (2021). Soft Tissue Sarcoma Histopathology Reporting Guide – Biopsy Specimens. 1st edition. Available from:  https://www.iccr-cancer.org/datasets/published-datasets/soft-tissue-bone/soft-tissue-sarcoma-biopsy-specimens/ (Accessed 1st March 2024).
2	International Collaboration on Cancer Reporting (2021). Soft Tissue Sarcoma Histopathology Reporting Guide – Resection Specimens. 1st edition. Available from:  https://www.iccr-cancer.org/datasets/published-datasets/soft-tissue-bone/soft-tissue-sarcoma-resection-specimens/ (Accessed 1st March 2024).
3	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France.
4	WHO Classification of Tumours Editorial Board (2024). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6 - Corrigenda July 2024. Available from:  file:///C:/Users/tinas/Downloads/CNS5%20Corrigenda%20doc_2024-07-08-1.pdf (Accessed 1st August 2024).
5	Louis DN, Wesseling P, Paulus W, Giannini C, Batchelor TT, Cairncross JG, Capper D, Figarella-Branger D, Lopes MB, Wick W and van den Bent M (2018). cIMPACT-NOW update 1: Not Otherwise Specified (NOS) and Not Elsewhere Classified (NEC). Acta Neuropathol. 135(3):481-484.

	Core and Non-core
	CLINICAL INFORMATION
	· Information not provided
· Information provided 
(select all that apply)
· Previous therapy, specify
· Previous history of tumour, specify 
· History of known cancer predisposition syndrome,
specify
· Relevant familial history, specify
· Other clinical information, specify
	For optimal tissue diagnosis and patient treatment, it is important that pathologists receive key clinical information with the specimen. Therefore, the clinical information received with the specimen is a core element for reporting. However, in acknowledging that the pathologist is only capable of documenting the clinical information that they receive, the clinical information sub-values (e.g., previous therapy) are classified as non-core. 

Details on previous treatment may not be available at the time of tumour diagnosis. Nonetheless, in some situations it is crucial to know whether the patient has had specific therapies such as radiation therapy, chemotherapy, corticosteroid therapy, embolisation, or radiosurgery. In particular, knowledge of such previous therapy may help to interpret changes such as necrosis, vasculature changes, cellular atypia and inflammatory cells.

Several genetic conditions (such as neurofibromatosis type 1 and 2, congenital mismatch repair deficiency syndrome Lynch syndrome, tuberous sclerosis, von-Hippel-Lindau, Cowden, Li-Fraumeni and naevoid basal cell carcinoma/Gorlin syndromes) are known to predispose individuals to specific primary CNS tumours. Knowledge of this information may therefore be relevant in differential diagnoses. In addition, the behaviour of tumours in such syndromes may differ from those of their sporadic counterparts. Therefore, knowledge of a genetic condition may inform prognostic estimation, guide clinical management and trigger genetic counselling. 
	

	Non-Core 
	OPERATIVE PROCEDURE 
	· Not specified
· Biopsy, specify 
· Resection, specify
· Other, specify
	The physical size of tissue specimens submitted for pathological assessment varies greatly depending on the operative procedure. Specimens obtained by stereotactic or endoscopic biopsy are typically the smallest and may be crushed during handling. Those from open biopsy are more ample and typically less damaged. Resection specimens are largest and require careful macroscopic inspection in order to sample properly.1 Importantly, the size of the submitted sample does not always reflect the procedure. Use of ultrasonic surgical aspirators, for example, may decrease the size of the submitted material relative to the total amount of resected material. 

As the reliability of neuropathological diagnosis depends heavily on the representative nature and adequacy of material assessed, it is important to pay attention to any discrepancy between submitted material and clinical information, including operative procedures and imaging findings. Doing so can help to minimise the influence of sampling errors and/or regional heterogeneity on the rendered diagnosis.1 
Reference
1	Fuller GN and Ballester LY (2018). Intraoperative Consultation and Optimal Processing In: Practical Surgical Neuropathology, Perry A and Brat DJ (eds), Elsevier, Philadelphia, 39-51. 
	

	RADIOLOGICAL INFORMATION

	Core
	TUMOUR SITEa
	(select all that apply)
· Not specified
· Indeterminate 
· No macroscopically visible tumour
· Skull, specify site(s) if known
· Dura, specify site(s) if known
· Leptomeninges, specify site(s) if known
· Cerebrum
· Cerebral lobes, specify site(s) if known
· Midline, specify site(s) if known
· Ventricle, specify site(s) if known
· Pineal, specify site(s) if known
· Sellar/suprasellar/pituitary, specify site(s) if known
· Brain stem, specify site(s) if known
· Cerebellum, specify site(s) if known
· Spine/vertebral column, specify site(s) if known
· Spinal cord, specify site(s) if known
· Spinal nerve root(s), specify site(s) if known
· Peripheral nerve, specify site(s) if known
· Other, specify site(s) if known 
	Tumour site is a core element for tumour entities where the information is essential for making the correct diagnosis. Examples include medulloblastomas, ependymal tumours, diffuse midline gliomas, and pineal region tumours. For other tumour entities, tumour site should ideally be recorded as well, as this can aid in the differential diagnosis and may correlate with outcome. 

Imaging studies are crucial in guiding neurosurgical and radiotherapeutic management of CNS tumours.1 Imaging and intra-operative findings can be used to designate a CNS tumour as being: 
· intra-axial (intraparenchymal tumour in cerebrum, cerebellum, brain stem, spinal cord); 
· extra-axial (dural/leptomeningeal, cerebellopontine angle, intraventricular, intra- or extradurally in the spinal canal); or 
· located in the skull, skull base, sellar/suprasellar region, pineal gland, spine, etc. 

Reference
1	Vincentelli C, Hwang SN, Holder CA and Brat DJ (2012). The use of neuroimaging to guide the histologic diagnosis of central nervous system lesions. Adv Anat Pathol 19(2):97-107.










	a Core for medulloblastomas, ependymal tumours, diffuse midline gliomas and pineal region tumours and others (refer to Note); in all other tumours it is non-core. 


	Non-core
	TUMOUR LATERALITY
	· Not specified 
· Left 
· Right 
· Midline 
· Bilateral
	Tumour laterality, as determined by imaging studies and as indicated by the surgeon, should be indicated as occurring on the right or left side of the CNS (e.g., right frontal lobe, left occipital convexity, right lateral ventricle, etc.). The term ‘midline’ in diffuse midline glioma, H3 K27-altered, refers to tumours that originate in the brainstem, thalamic region, spinal cord or cerebellum. Tumours arising in other midline structures such as third or fourth ventricle, (supra)sellar region or pineal region, should also be recorded as such. Occasionally, tumours may involve both sides of the brain and should be referred to as bilateral; a ‘butterfly’ glioblastoma crossing the corpus callosum and involving both sides of the cerebrum is an example.  
	

	Non-core
	TUMOUR FOCALITY
	· Unifocal
· Multifocal
Specify number of lesions
	While most CNS tumours are solitary (unifocal), multifocal examples exist, often representing malignant brain tumours (e.g., glioblastoma, IDH-wildtype and primary CNS lymphoma). For tumours to be considered multifocal, they should be noncontiguous, as determined by neuroimaging studies. However, it is recognised that autopsy studies of such radiologically multifocal tumours may histologically reveal contiguity between lesions. Gliomatosis cerebri, previously recognised as a distinct diffuse glioma entity involving multiple cerebral lobes, is in the WHO CNS5 Tumour Classification recognised as a growth pattern and not a distinct tumour type.1 

Reference
1	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 
	

	Non-core
	TUMOUR DIMENSIONS
	Largest/dominant lesion
___ mm  x ___ mm  x  ___ mm
	Preoperative radiological tumour dimensions serve as approximate guidance as to whether tumours have been sampled adequately, particularly when dealing with small biopsies. Post-surgery, they also give information regarding how much of the tumour has been resected. For example, radiologic-pathologic correlations can guard against making a diagnosis of low grade glioma on a stereotactic biopsy sample obtained from the edge of a large, heterogeneously enhancing cerebral lesion.     
	

	Non-core
	RELATIONSHIP OF TUMOUR TO ADJACENT TISSUE
	· Well demarcated 
· Diffuse/infiltrative 
· Mixed (Well-demarcated and diffuse in different areas)

Peritumoral edema
· Absent
· Present
	The interface between tumour and adjacent brain as depicted by neuroimaging (magnetic resonance imaging (MRI), computed tomography (CT)) provides information on the growth pattern and on the dynamics of tumour growth. Hyperintensity on fluid-attenuated inversion recovery (FLAIR) images may indicate infiltrative tumour growth and reflect invasiveness of the tumour. This may also be reflected by diffuse or patchy contrast enhancement at the interface between tumour and normal brain (see CONTRAST ENHANCEMENT). Absence of peritumoural alterations on T2 and FLAIR sequences suggests a more benign lesion. 

The MRI patterns may also vary within the tumour with partly well-demarcated areas and partly infiltrative growth. Oedema is visualised as a hypointense signal alteration on T1-weighted sequences without contrast and, similar to infiltrative growth, as hyperintense signal on FLAIR sequences. Differentiation between infiltrative growth and oedema is often impossible, notably in diffuse gliomas. Slowly growing, more benign tumours induce relatively less oedema than fast growing malignant tumours. Information provided by the surgeon on where the tissue specimens were collected relative to the MRI changes also aids the pathologist in interpreting the histological findings. 
	

	Non-core
	CONTRAST ENHANCEMENT
	· Non-enhancing
· Enhancing 
· Diffuse/solid
· Patchy/heterogeneous
· Ring or rim
	Contrast enhancement of intra-axial tumours is commonly interpreted as reflecting blood-brain barrier disturbance. Extra-axial tumours (growing outside the brain parenchyma, e.g., meningiomas) commonly take up contrast vividly. For intrinsic brain tumours such as diffuse gliomas, contrast enhancement is commonly interpreted as a sign of increasing malignancy, but this correlation is far from complete. For example, pilocytic astrocytomas, gangliogliomas, and other tumours take up contrast, but are assigned to CNS WHO grade 1 and carry a favourable prognosis. Vice versa, lack of contrast-enhancement may occur in high-grade IDH-wildtype diffuse glioma/glioblastoma. Ring enhancement is commonly associated with extensive central necrosis and reflects a high grade of histological malignancy but is rarely seen in benign tumours as well. 

Contrast enhancement is subject to pharmacological modification (e.g., by corticosteroids) or antiangiogenic agents, (e.g., bevacizumab). Thus, pharmacotherapy may be a challenge for MRI interpretation. Changes in contrast enhancement have traditionally played a central role in response assessment in neuro-oncology, (e.g., in the Macdonald criteria8), but the additional consideration of T2 and FLAIR sequences has increasingly been implemented into response assessment.1 
Reference
1	Wen PY, Chang SM, Van den Bent MJ, Vogelbaum MA, Macdonald DR and Lee EQ (2017). Response Assessment in Neuro-Oncology Clinical Trials. J Clin Oncol 35(21):2439-2449. 
	

	SPECIMEN DETAILS

	Core
	SPECIMEN DIMENSIONS
	___ mm  x ___ mm  x  ___ mm
· Cannot be assessed, specify
	Intrinsic tumours grow diffusely within the brain and in many instances cannot be completely removed. Clinical factors (e.g., performance status), tumour location, and where relevant, intraoperative diagnosis, often determine the extent of resection, ranging from a stereotactic biopsy to a resection of a lobe. Surgical technique may result in a discrepancy of the amount of tissue resected and received in the pathology department, in particular when a surgical ultrasonic aspirator is used, and the collected tissue is partly discarded. 

It is important to record the volume of tissue arriving in the pathology department and thus the amount of tissue available for diagnosis (and where possible for frozen tissue banking for subsequent studies). If a tumour, for example a schwannoma or meningioma, arrives in one piece, it can be measured relatively accurately. Brain tumour surgery, however, often results in tissue fragments, making an accurate assessment difficult. Where possible, the size of large resection specimens should be recorded in three dimensions and piecemeal resections should be estimated by their aggregate size in three dimensions. Alternatively, an accurate and reproducible determination of the tissue volume may be achieved by weighing tissue fragments, compared to visual estimates in three dimensions.
	Record for each specimen
submitted.

	Non-core
	SPECIMEN DESCRIPTION
	Text
________
	The description of resection margins is generally not applicable for intra-axial CNS tumours as surgical technique results in fragmented specimens in most instances, except when complete resection of a lobe can be achieved. Therefore, staging and assessment of resection margins is generally not possible and thus not included in published protocols. Additionally, diffusely infiltrative tumours have often invaded well beyond designated surgical margins, even when tumour cells are not evident at that margin. Extra-axial tumours, such as meningiomas, schwannomas, and other well-demarcated tumours can often be resected and submitted intact. This allows a description of the lesion itself, and adherent structures, such as meninges, nerve roots, and CNS tissue. However, when arriving in fragmented state, the report may necessarily be limited to a description of individual components, and the degree of fragmentation.

When applicable, description should also include the presence of other components, such as CNS tissue, dura mater, skin, bone, blood clot and extrinsic components such as haemostatic material, metal clips, synthetic bone, mesh, shunt ducts, etc.

Specimens may arrive fresh or in fixative. This should be indicated when describing the colour of the specimen as it changes with fixation. 

Specimens may also arrive in already processed forms, such as blocks or slides. In such situations, description should be given for blocks and slides, indicating the number of blocks and/or slides. Slides may be described in greater detail, for example, total number of glass slides, comprising number of haematoxylin and eosin and other slides (e.g., immunohistochemistry, smears, controls), as well as other materials (e.g., neuroimaging files).
	

	Non-core
	ADEQUACY OF SPECIMEN FOR HISTOLOGICAL ASSESSMENT
	· Specimen is adequate for analysis
· Specimen is adequate but limited by, specify
· Specimen is inadequate for analysis (select all that apply)
· Crush
· Autolysis
· Cautery
· Necrosis
· Other, specify
	The adequacy of a specimen for histological assessment can be affected by various intraoperative procedures, tissue fixation issues (duration in/volume of fixative), and technical processing issues in the histology laboratory. These include, but are not limited to, electrocautery/heat/laser treatment intraoperatively, distortion of tissue due to surgical instrumentation, delay in placing wet tissue into fixative by the surgeon/operating room technician, less than 10:1 fixative-to-tissue volume ratio, and excessive fracturing/knife chatter in tissue during cutting of the frozen tissue/paraffin block. 

Tiny size of a biopsy can lead to tissue exhaustion during processing. Highly necrotic, mucinous, fibrous, calcified, lipidised, or ossified specimens may cause suboptimal processing/sectioning. Any of these conditions can obscure nuclear/nucleolar features, distort degree of cellularity, blur tumour margins, and/or make mitotic activity impossible to assess. Prior freezing of the tissue for frozen section intraoperative diagnosis may negatively impact cytological assessment in the fixed, embedded tissues and immunohistochemistry for some antibodies. 

In each case, the pathologist should state which of these conditions make the tissue inadequate/suboptimal for histological assessment. 
	

	Non-core
	ADEQUACY OF SPECIMEN FOR DIAGNOSTIC PURPOSES
	· Specimen is adequate for diagnostic purposes
· Specimen is adequate but limited by, specify
· Specimen is inadequate for diagnostic purposes (e.g., not
representative of likely clinicoradiological diagnosis), specify
	Many intraparenchymal brain lesions are surgically assessed by either small open excisional biopsy or stereotactic biopsy. While navigational equipment is usually employed to optimise targeting, the known ability of brain tissue to swell during an operative procedure can cause shifting of brain tissue during the procedure, which can result in biopsies that are suboptimally centred on the area(s) of interest. Examples of suboptimally centred tissues include: biopsies from diffuse infiltrating gliomas taken from the edge (not centre) of the tumour; biopsies adjacent to a tumour (gliosis with Rosenthal fibres next to a craniopharyngioma); and biopsies from infections in which the necrotic/purulent centre may be submitted by the surgeon for culture(s), leaving the pathologist with reactive, but not organism-containing, edges of the process. Occasionally, tissue lost to intraoperative suctioning or lesional tissues given in overly generous amounts to brain banks can render the tissue sent to the pathologist suboptimal for diagnosis. 

Any of these situations can leave the pathologist with tissue that can be misleading in terms of type of tumour, grade of tumour, or inability to detect organisms, if present. The diagnosis possible on the submitted tissues may be under-representative or misrepresentative of the lesion based on the neuroimaging studies. In some instances, small tissue size, tissue processing issues, or suboptimal targeting of biopsy materials may make molecular testing impossible. The pathologist should specify the limitations of the tissue in achieving optimal diagnosis.  
	

	Core
	HISTOLOGICAL APPEARANCEb
	· Cannot be determined
Describe the histological appearance according to the World
Health Organization (WHO) Classification of Central Nervous
System Tumours (2021)
	This element is core if it is an essential component of the final (integrated) diagnosis. Histological features that are essential for diagnosing the tumour according to the WHO CNS5 Tumour Classification should be reported.

In nearly all pathology reports of CNS neoplasms, the diagnosis should ideally include one of the >100 tumour types listed in the WHO CNS5 Tumour Classification (see Table 1). 1,2 The information on haematolymphoid tumours in Table 2 is based on the WHO 5th edition classification of those tumours.3 For many CNS tumours, the histological assessment should be combined with molecular (or surrogate immunohistochemical biomarker) testing for signature molecular alterations to reach an ‘integrated diagnosis’ (e.g., diffuse astrocytoma, IDH-mutant, CNS WHO grade 2; see ICCR dataset section on Integrated final diagnosis). For other tumour types, the final diagnosis can still be based on classical histopathology alone. In either approach (purely histological or integrated histological-molecular), obtaining as precise a final diagnosis as possible is critically important, as this forms the basis for all subsequent patient management decisions, accruing patients to the appropriate clinical trials, epidemiologically assessing disease trends over time, and establishing valid research conclusions.4-6 As such, the strict application of WHO CNS5 diagnostic guidelines is required to enhance both accuracy and interobserver reproducibility across the globe.

For cases that, after adequate ancillary testing, do not neatly conform to a well-recognised tumour type (see last category listed as ‘Other, specify’), a descriptive diagnosis should be rendered instead, providing as much information as possible including relevant molecular information (e.g., low grade neuroepithelial tumour with oligodendroglial-like histological features suggestive of dysembryoplastic neuroepithelial tumour; high grade glioneuronal neoplasm; poorly differentiated malignancy; etc.). Such cases should be designated ’not elsewhere classified’ (NEC). And in a situation where the necessary ancillary testing could not be performed or was performed but was technically inconclusive, ‘not otherwise specified’ (NOS) can be added to the histological diagnosis.7 

It should be noted that in some cases the results are not clear cut, and the addition of a secondary diagnosis may be of benefit to record in the report.

A tentative or provisional grade may be assigned after histological evaluation alone, but in an increasing number of tumour types, molecular findings need to be integrated for a definitive, ‘integrated’ grade (see ICCR dataset section on Integrated final diagnosis - TUMOUR GRADE). 

Table 1 and 2 (See end of the document for tables)


References
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	b Core if histological appearance is an essential component of the final
(integrated) diagnosis (refer to Note).

	Non-core
	INVASION INTO SURROUNDING TISSUE/STRUCTURES
	· Not identified (i.e., tumour is well-demarcated from
surrounding brain or other tissues)
· Present, specify type
· Cannot be assessed (e.g., no surrounding tissue present),
specify
	Most neuroepithelial tumours, particularly diffuse gliomas, demonstrate diffuse infiltration of tumour cells beyond grossly discernible margins. Isolated tumour cells are often present in grossly normal-appearing parenchyma surrounding the lesions. Involvement of leptomeninges and Virchow-Robin spaces are also common in gliomas, but may be observed also in some benign tumours such as pilocytic astrocytoma and ganglioglioma. These ‘invasions’ provide no prognostic significance beyond the given biological malignancy of each tumour. Direct invasion into adjacent structures such as dura and skull, is quite exceptional in gliomas. 
 
On the other hand, invasion of adjacent structures may be relevant in some non-neuroepithelial tumours, meningioma in particular, and can be assessed if the interface between the tumour and the adjacent tissue is appropriately submitted for assessment. Brain invasion is still a criterion for atypical CNS WHO grade 2) meningioma in the WHO CNS5 Tumour Classification,1 and is characterised by irregular, tongue-like protrusions of tumour tissue into underlying parenchyma without an intervening layer of leptomeninges. However, extension along Virchow-Robin spaces does not constitute brain invasion. Bone involvement has been associated with increased recurrence rates in the setting of atypical meningioma.1 

Reference
1	Sahm F, Perry A, von Deimling A, Claus EB, Priscilla CM, Brastianos K and Santagata S (2021). Meningiomas. In: WHO Classification of Tumours. Central Nervous System Tumours. 5th Ed, Louis DN (ed), IARC, Lyon. 
	

	Non-core
	HISTOLOGICAL EVIDENCE OF PREVIOUS THERAPY
	· No evidence of previous therapy
· Evidence of previous therapy (select all that apply)
· Vascular changes 
· Reactive glial changes 
· Inflammatory changes 
· Radiation type necrosis 
· Granulation and/or scar tissue 
· Ischemic type of necrosis 
· Foreign material (e.g., embolisation/procoagulant 
· material) 
· Other, specify
	Previous therapy, including previous surgery, embolisation, chemotherapy, corticosteroid therapy and radiotherapy, may significantly alter the histological appearance of tissues and result in difficulties in tumour typing and grading.1 Information on previous therapy is, however, not always available to the pathologist and the absence of histological evidence does not necessarily imply absence of previous therapy (see CLINICAL INFORMATION). 

Therapy-associated histological findings are often non-specific, except for iatrogenically introduced foreign materials such as embolic agents, and are not always adequately distinguished form tumour-associated findings. In this regard, CNS WHO grades may not be readily assigned to the specimens after some previous therapies. Histological changes of radiation damage are particularly common in specimens from recurrent diffuse gliomas. These include large foci of coagulative necrosis with hypocellular edges and microcalcifications; hyalinised or necrotic vessels with enlarged, atypical endothelial cells; and pale, rarefied parenchyma with fibrin deposits. The presence of such changes is highly suggestive of previous radiation therapy, even if a clear clinical history of previous radiation has not been provided. A notoriously difficult situation is created by the pre-surgical application of high-dose corticosteroids in patients with intracerebral aggressive B-cell lymphoma as this treatment may result in complete vanishment of the neoplastic B-cells leaving only inflammatory and other reactive changes upon histology (corticoid-mitigated primary CNS lymphoma).

Reference
1	Perry A (2018). Therapy-Associated Neuropathology. In: Practical Surgical Neuropathology, Perry A and Brat DJ (eds), Elsevier, Philadelphia, 493-503.  
	

	Molecular Information Reporting Guide

	REFER TO Tables 3-5 FOR CORE ELEMENTS REQUIRED FOR CENTRAL NERVOUS SYSTEM TUMOUR CLASSIFICATION 
(Elements from ALK/ROS1/MET/NTRK FAMILY ALTERATIONS to OTHER IMMUNOHISTOCHEMISTRY FINDINGS are only required for some tumours)
(Based on the World Health Organization Classification of Tumours of the Central Nervous System (2021))

	Scope of this dataset section
Molecular Information Reporting Guide
	This dataset section has been developed for the molecular assessment of primary CNS tumours, whether that molecular assessment is nucleic acid or protein based. This section is to be used for those tumours in which molecular information is captured for diagnostic purposes. However, as this dataset section applies to a growing subset of CNS tumours, it is anticipated that its use will increase over time.

This dataset section has been developed for the molecular assessment of benign and malignant primary tumours of the CNS and its coverings, as well as tumours from those structures of the peripheral nervous system immediately adjacent to the CNS. This dataset applies to both biopsy and resection specimens of adult and paediatric CNS tumours. Haematological lesions involving the CNS and germ cell tumours are not covered in detail as these are not the primary focus of the CNS dataset. Most sarcomas are not included and are covered by separate ICCR datasets.1,2. Secondary tumours of the CNS (for example, metastatic tumours from carcinomas, sarcomas or melanomas in other organs) are not covered in this dataset. Tumours of the pituitary gland are included as the majority of these tumours are reported by neuropathologists worldwide.

This dataset section on molecular assessment should be used in conjunction with the dataset sections on Histological assessment and the Integrated final diagnosis. 

The 2nd edition of this dataset incorporates the WHO Classification of Tumours of the CNS, 5th edition (CNS5), 2021.3 The ICCR dataset includes 5th edition Corrigenda, July 2024.4 A complete diagnosis of CNS tumours should ideally conform to the final integrated diagnoses in the 2021 WHO CNS5 Tumour Classification, which for most tumour types now require integration of elements from histological and ancillary analyses.
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2	International Collaboration on Cancer Reporting (2021). Soft Tissue Sarcoma Histopathology Reporting Guide – Resection Specimens. 1st edition. Available from:  https://www.iccr-cancer.org/datasets/published-datasets/soft-tissue-bone/soft-tissue-sarcoma-resection-specimens/ (Accessed 1st March 2024).
3	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France.
4	WHO Classification of Tumours Editorial Board (2024). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6 - Corrigenda July 2024. Available from:  file:///C:/Users/tinas/Downloads/CNS5%20Corrigenda%20doc_2024-07-08-1.pdf (Accessed 1st August 2024). 

	
	Overview of selected molecular (including protein) diagnostic markers for CNS tumours  

Tables 3-5 describe the molecular and immunohistochemistry (IHC) markers listed as essential or desirable criteria for tumours in the WHO Central Nervous System 5th edition (CNS5) Tumour Classification.1 The tables should be used as a reference to determine which markers are core (in bold) or non-core (non-bold) for each tumour entity. Molecular and IHC alterations which are core versus non-core correspond to WHO essential and desirable diagnostic criteria, respectively. 

While these elements are deemed core, in some jurisdictions, consideration should be given to temporarily downgrading them to a non-core element until resources allow. Practical and economical guidelines, which include a comprehensive list of IHC markers, for diagnosing CNS tumours in resource-restrained jurisdictions are being developed by the Asian Oceanian Society of Neuropathology for Adapting Diagnostic Approaches for Practical Taxonomy in Resource-Restrained Regions (AOSNP-ADAPTR).2 

The list of alterations is not exhaustive and other markers or assays may be helpful in some diagnostic circumstances. In addition, the tests listed are mostly related to ‘ruling in’ the corresponding diagnoses. However, it should be realised that the assays may also be used in particular diagnostic situations to ‘rule out’ other diagnoses. An example of this would be ATRX IHC showing a loss of nuclear expression, which is commonly used to support a diagnosis of IDH-mutant astrocytoma, but which is also used to rule out a possible diagnosis of oligodendroglioma, IDH-mutant and 1p/19q-codeleted. 

Some specific alterations recommended in the commentaries below represent one of several validated and equivalent approaches to the evaluation of the described molecular variable. For those alterations that have multiple testing modalities (e.g., sequencing for BRAF p.V600E and IHC for the mutant protein), it is assumed that only one of these testing modalities would be used per case unless one test yields equivocal results (e.g., a result of weak IHC positivity versus nonspecific background staining should be followed by gene sequencing). For some tests, relevance may be related to the age of the patient (e.g., IDH1/IDH2 gene testing of a diffuse glioma that is negative for the IDH1 R132H variant protein in elderly versus young adult patients). The reader is referred to the commentaries under each molecular parameter for further information.

In many instances in this dataset, the term ‘variant’ or ‘sequence alteration’ is used in place of the term ‘mutation’, based on the consensus recommendations of the American College of Medical Genetics and Genomics, the Association for Molecular Pathology, the Clinical Genome Resource, Cancer Genomics Consortium and the Variant Interpretation for Cancer Consortium.3,4 

The use of published algorithms may be helpful in some situations, such as for molecular biomarker testing for the diagnosis of diffuse gliomas.5 Diagnostic algorithms can be beneficial to assist with stepwise decisions, especially when resources are limited. However, diagnostic algorithms can be overly rigid and have the potential to skew usage towards select molecular assays in place of acceptable alternative surrogate markers.

In many jurisdictions, it is a requirement to maintain records associated with molecular diagnostic marker testing, which can include the molecular platform used, the antibody clone, controls, validation, and specific methodology deployed etc. Documentation of these details should be considered according to local requirements and best practice procedures.

In addition to reporting the significant alterations found in multi-gene molecular tests, consideration should be given to reporting ‘negative’ or non-significant findings in summary format, for example, that ‘no other relevant gene alterations were observed’.6 Documentation of the method and full gene list will allow for future retrieval and review if required. 

Table 6 describes genetic CNS tumour syndromes summarised from the WHO CNS5 Tumour Classification.1

Tables 3-6 (See end of the document for tables)
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	Non-core
	ADEQUACY OF SPECIMEN FOR HISTOLOGICAL ASSESSMENT
	· Specimen is adequate for analysis
· Specimen is inadequate for analysis (select all that apply)
· Crush
· Autolysis
· Cautery
· Necrosis
· Decalcification
· Tumour cell quantity
· Fixation issues, specify
· Other, specify
Representative blocks for ancillary studies, specify those blocks best representing tumour and/or normal tissue for further study
	The 2021 WHO CNS 5th edition (CNS5) Tumour Classification uses histology, immunohistochemistry (IHC) and molecular parameters to define many tumour entities.1 Procuring viable and adequate tumour tissue allows appropriate histological and molecular assessment. However, the requirements for an adequate specimen for molecular assessment are not always the same as those for histological assessment. For example, ischemic times are critical for the quality of nucleic acid in general; the sooner samples can be frozen or fixed, the better. If immediate freezing or immediate appropriate fixation is not possible, placement in a refrigerator may reduce the degradation of nucleic acids. 

[bookmark: OLE_LINK3]Crush or freezing artefacts may affect adequacy for histopathology, including IHC or in situ hybridisation (ISH) testing, but do not often affect adequacy for molecular assays. Samples embedded in optimal cutting temperature (OCT) compound for cryostat sectioning can be a good source, and an advantage of using such samples is that one can evaluate tumour cell quantity as well as quality by checking histological sections of each sample. 

Formalin-fixed, paraffin-embedded (FFPE) tissue samples also often provide a valuable source of information for molecular assessment. FFPE samples, however, can sometimes be more difficult for molecular biology assays because of fixation issues (such as overfixation and decalcification) that often cause nucleic acid degradation, resulting in fragmented DNA and RNA transcripts. Nonetheless, many laboratories have optimised molecular assays for FFPE tissue, given its commonplace nature. 

Histological examination of tissue specimens used for nucleic acid extraction and subsequent molecular testing is essential to assure that vital tumour tissue with sufficient neoplastic cell content is being analysed. In certain cases, microdissection of cellular tumour areas may be required to ensure sensitivity of molecular analysis.
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	Core
	ALK/ROS1/MET/NTRK FAMILY ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe
TESTING METHODd 
(select all that apply)
· Immunohistochemistry (IHC)
· In situ hybridisation (ISH)
· Next generation sequencing (NGS)
· Other, specify
	ALK fusion or rearrangement
The ALK (Anaplastic Lymphoma Kinase) gene (2p23) belongs to the insulin receptor superfamily of receptor tyrosine kinases (RTKs) and activates multiple downstream signal transduction pathways, including MAPK/PI3K/AKT/mTOR and JAK/STAT pathways.1 In cancer, ALK can be activated by gene fusions or point mutations/variants. Among gliomas, ALK fusions are mostly restricted to Infant-type hemispheric glioma (IHG) that are characterised by RTK gene fusions involving ALK, ROS1, NTRK or MET.2,3

ALK fusions have been reported in about a third (39/130) of IHGs.2 Thirteen different fusion partners have been observed.2 All ALK fusions contain the complete ALK kinase domain at the C-terminal end, while the N-terminal partners retain variable domains in the chimeric protein, although most N-terminal partners have a coiled-coil or dimerisation domain.4

ALK fusions can be detected by  ISH using dual-label break apart probes, next generation sequencing (NGS)-based gene fusion panel sequencing or whole transcriptome sequencing. Fusions lead to increased ALK protein expression that can be detected by IHC, a common method used to identify ALK-activated tumours. 

In a number of jurisdictions, IHC assays have been approved as companion diagnostics to aid in the identification of patients eligible for treatment with ALK inhibitors like crizotinib.5,6
The most common indications for ALK fusion testing in CNS tumour diagnostics include intracerebral metastases of NSCLC (non-small cell lung carcinoma) in adults and a differential diagnosis of IHG in children.7 Among non-glial tumours that occasionally involve the CNS, ALK-positive anaplastic large cell lymphomas are characterised by oncogenic ALK fusions. ALK fusions have also been noted in ALK-positive histiocytosis, which is a novel type of systemic histiocytic proliferative disorder occurring predominantly in young children, rarely showing exclusive involvement of the CNS.8,9

In addition to being a diagnostic marker for IHGs, ALK fusions also appear to be prognostic in this tumour type, although additional investigation is needed. One study observed a higher 5-year overall survival rate in patients with ALK rearranged tumours (53.8%), as compared to ROS and NTRK altered tumours.3 ALK rearranged tumours with low grade histology were diagnosed at an older age and had better survival rates, as compared to those of patients with ALK altered high grade gliomas. 
 
The presence of ALK fusions also provides opportunity for targeted therapy using ALK inhibitors, and early experience has demonstrated responses.7,10 Interestingly, different ALK fusion-positive tumours have varying sensitivity to ALK inhibitors.4 

Investigation of ALK alteration is a core element for infant-type hemispheric glioma.

ROS1 fusion or rearrangement
The ROS1 (ROS proto-oncogene 1) gene (6q22.1) closely resembles ALK both in sequence and structure. Both receptors signal via the RAS/MAPK as well as the JAK/STAT and PI3K/AKT/mTOR pathways.7 ROS1 fusions arise through intrachromosomal 6q micro-deletions in IDH-wildtype glioblastomas, although they are very rare as indicated by only 3 of 520 tumours in the Cancer Genome Atlas cohort.7 ROS1 fusions are also reported in IHG.2,3 In a series of 118 infants with IHG, 7 (4%) were diagnosed with a ROS1 fusion.3 Clark et al2 (2020) showed ROS1 fusion as a driving alteration in 9 out of 130 cases. 

Immunohistochemistry (IHC), ISH (break apart probes), and DNA- or RNA-based NGS (custom panels or commercially available panels) can be used to detect ROS1 fusion. However, each of these methods has limitations. IHC can be used as a screening method, yet it may identify tumours with increased protein expression in the absence of a fusion. Therefore, in case of a positive ROS1 immunostaining, confirmation with either ISH or NGS should be performed.11

ROS1 fusions, though rare, are a diagnostic marker for IHGs in the appropriate clinical and radiological setting and also provide options for targeted therapy. Furthermore, one study reported that patients with tumours that harboured ROS1 alterations had a lower 5-year overall survival rate, as compared to those with ALK alterations (25% versus 53.8%).3

Reports on successful targeted treatment of CNS tumours in children with ROS1-positive fusions such as IHG are anecdotal, but responses have been reported.12,13

Investigation of ROS1 alteration is a core element for infant-type hemispheric glioma.

NTRK family alterations
The neurotrophic tyrosine receptor kinase (NTRK) genes include NTRK1 (1q23.1), NTRK2 (9p21.33), and NTRK3 (15q25.3) and encode tropomyosin receptor kinases (TRKs), a family of RTKs involved in the development and maturation of the central and peripheral nervous system.

Although oncogenic variants and alternative splicing occur, fusions are the most common alterations of NTRK in tumours. The most common alteration is a fusion between an NTRK gene and another N-terminal partner. All these aberrations result in the constitutive activation of the kinase due to loss of the extracellular domain.4

NTRK fusions are reported in about 4% of paediatric gliomas and most of these are high grade. They are most prevalent in IHG.2,3,14 Clark et al2 (2020) reported that the most commonly targeted genes in their series were in NTRK1/2/3. NTRK2 was found with numerous novel partners but was largely seen in other glioma subtypes (e.g., H3K27M in midline regions), suggesting an important difference in NTRK2 compared to NTRK1/3 fusion–positive cases. 

Among adult CNS tumours, NTRK fusions have been reported at a frequency of 1-2% in glioblastoma, IDH-wildtype.15 They have also been described in approximately 2% of pilocytic astrocytomas (PAs)16, and rarely in diffuse low grade gliomas, MAPK pathway-altered.17 

NTRK fusion genes in CNS tumours can be assessed by ISH, reverse transcriptase-polymerase chain reaction (RT-PCR) or RNA-based sequencing (either panel based or whole transcriptome). Endogenous and physiological NTRK expression renders assessment by IHC in the nervous system challenging and thus molecular techniques are recommended.18

NTRK fusions are diagnostic markers of IHGs and also appear to carry prognostic significance. In one study,3 it was reported that NTRK fusion-positive tumours had an intermediate prognosis, as compared to ALK- and ROS-altered tumours in that the 5-year overall survival rate was 42.9%. 

NTRK fusion provides an opportunity for targeted therapy with specific small molecule inhibitors. Larotrectinib and entrectinib have been conditionally approved by both the European Medicines Agency and the United States Food and Drug Administration (FDA) for NTRK fusion-positive cancers. Additional data regarding the efficacy of NTRK inhibitors in adult and paediatric CNS tumour patients are needed.4,7

Investigation of NTRK alteration is a core element for infant-type hemispheric glioma.

MET alterations
The MET oncogene (7q31.2) encodes hepatocyte growth factor/HGF, an RTK that plays a pivotal role in differentiation, cell proliferation, angiogenesis, migration, invasion, genomic stability and resistance to therapy.7 Dysregulation of MET signalling and activation of downstream pathways (RAS/MAPK, PI3K/AKT, and STAT pathways) can be caused by various mechanisms, including MET amplification, point mutation, fusion and MET exon skipping alteration.7,19,20

Amplifications of MET have been reported in 0.7-6.2 % of IDH-wildtype glioblastomas and 5.2-17 % of IDH-mutant astrocytomas. They have also been identified in 20% of diffuse midline gliomas H3 K27-altered, in 10% of diffuse hemispheric gliomas H3 G34-mutant, and in gliomas arising after irradiation.21,22

A variety of MET fusions have been detected in CNS tumours. MET fusions with variable N -terminal fusion partners have been described mainly in diffuse paediatric-type high grade gliomas, H3-wildtype and IDH-wildtype, IHG and in 3% of IDH-wildtype glioblastoma.2-4,7,23 Rarely, MET alterations have been reported in diffuse low grade gliomas, MAPK pathway-altered.17 

MET fusions in adult patients have been reported in a small subset of IDH-mutant astrocytomas (mainly in high grade and recurrent tumours) and in IDH-wildtype glioblastomas.4,24,25 

Exon skipping alterations of MET exon 14 and exon 7-8 have not been analysed to any significant extent in CNS tumours. However, few studies have reported these alterations in 6%-8% of high grade gliomas.7,25 Similarly, the frequency of MET sequence variants in CNS tumours has not been precisely defined.7

There is no established and validated diagnostic test to assess MET alterations in CNS tumours by IHC. Specific MET protein antibodies have been tested to detect MET amplifications in gliomas, but standardised methods do not exist. Furthermore, the usefulness of MET IHC to detect MET fusions and exon skipping alterations is unclear. Hence, the preferred method is molecular detection of MET alterations.

Due to the frequent occurrence of multiple MET alterations simultaneously (e.g., amplifications, fusions with various breakpoints, exon skipping etc.), a hybrid capture based (targeted) DNA/RNA sequencing approach is recommended.7,20

The detection of a MET fusion can aid in establishing the diagnosis of IHGs and also provides options for targeted therapy. The effectiveness of MET inhibitors in CNS tumours have been investigated in several phase I and II studies, but the effectiveness in biomarker-stratified cohorts with MET alterations has largely not been assessed.26

Investigation of MET alteration is a core element for infant-type hemispheric glioma.
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	Core
	ATRX ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe
TESTING METHOD 
(select all that apply)
· Sanger sequencing
· NGS
· PCR-based method
· IHC
· Indeterminate
· Intact nuclear expression
· Loss of nuclear expression
· Other, specify
	The diagnosis of an IDH-mutant astrocytoma (CNS WHO grade 2, 3 or 4) is supported by the presence of TP53 expression or alteration (mutation or deletion), in addition to loss of expression or alteration of the ATRX (α-thalassemia/mental retardation syndrome X-linked) gene (Xq21.1).1,2 Evaluation for ATRX alteration is also commonly used to rule out the possibility of an oligodendroglioma, IDH-mutant and 1p/19q-codeleted.

Determination of ATRX loss of nuclear expression/mutations can be achieved in a number of ways, with a practical and cost-effective manner being IHC. The loss of nuclear ATRX immunostaining in neoplastic cells, with its maintained expression in non-neoplastic cells, such as endothelial cells or non-neoplastic glia, is strongly associated with ATRX genetic alterations and can be reliably used as a surrogate marker.3 Mosaic staining patterns have also been reported, but these are not always associated with ATRX sequence alterations.4 In combination with IHC for IDH1 R132H mutant protein and p53, ATRX IHC provides definitive results in the majority of cases, with the added benefit of preserving cytoarchitecture for microscopic examination. 

Investigation of ATRX alteration is a core element for astrocytoma, IDH-mutant.
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	Core
	BCOR INTERNAL TANDEM DUPLICATIONc
	· Indeterminate
· Absent
· Present, describe
TESTING METHOD 
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify

	Demonstration of a BCOR (BCL-6 Corepressor) internal tandem duplication (ITD) is required for the diagnosis of central CNS tumour with BCOR ITD, introduced as a new embryonal tumour type in the WHO CNS 5th edition (CNS5) Tumour Classification.1 

This alteration consists of a solitary heterozygous BCOR ITD in exon 15 of the BCOR gene (Xp11.4). As its name implies, BCOR acts as an interacting corepressor of BCL-6, with an epigenetic regulator function, taking part in the polycomb repressive complex 1 (PRC1).2 This alteration is also found in various other neoplasms, such as small round cell sarcomas of soft tissues, clear cell sarcomas of the kidney and primitive myxoid mesenchymal tumour of infancy.3 

In routine neuropathological practice, RT-PCR or RNA sequencing by NGS could be used to detect BCOR ITDs, but strong and diffuse nuclear immunoexpression of BCOR has been reported as a practical surrogate for the presence of this alteration.4 Furthermore, DNA methylation profiling can be used to classify CNS tumours with BCOR ITD as such, based on their methylation ‘fingerprint’.5

In similarity with soft tissue tumours, rare CNS tumours sharing the same DNA-methylation cluster as CNS tumours with BCOR ITD, present with an alternative BCOR alteration, such as deletion of BCOR, sequence variation of the BCOR gene or an EP300::BCOR(L1) fusion.5 These tumours show MRI homologies with CNS-BCOR ITD, but are significantly distinct from their BCOR ITD counterparts in terms of age, location, progression-free survival, tumour growth pattern, and also immunopositivity for the BCOR protein.6,7 Indeed, such CNS BCOR tumours with alternative alterations express variable BCOR by IHC with a high proportion of cases being immunonegative.4,8,9 

Immunohistochemistry (IHC) for SATB2 has been reported as a sensitive but non-specific immunohistochemical marker for tumours with BCOR ITD and for alternative BCOR alterations.4

Investigation of BCOR alteration is a core element for CNS tumours with BCOR internal tandem duplication.
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	Core
	BRAF ALTERATIONSc
	BRAF variant
· Indeterminate
· Absent
· BRAF p.V600E (c.1799T>A) variant present
· Other BRAF sequence variant present, specify
VARIANTS ASSESSED
(select all that apply)
· p.V600E
· Any variant in exon 15
· Other BRAF variant, specify
TESTING METHOD 
(select all that apply)
· Sanger sequencing
· NGS
· PCR-based method
· IHC 
BRAF p.V600E expression
· Indeterminate
· Negative
· Positive
· Other, specify
BRAF rearrangement/duplication
· Indeterminate
· Absent
· Present, describe
VARIANTS ASSESSED
(select all that apply)
· KIAA1549::BRAF fusion 
· BRAF::RAF1 fusion 
· Other, specify 
TESTING METHOD 
(select all that apply)
· Sanger sequencing
· ISH
· RT-PCR
· Array-based method
· RNA-sequencing
· Other, specify 
	BRAF genetic alterations 
The BRAF (V-Raf Murine Sarcoma Viral Oncogene Homolog B protooncogene; 7q34) p.V600E sequence variant in exon 15, which is the most common BRAF alteration, affects a large variety of CNS tumours. It has been reported in 96% of papillary craniopharyngiomas, 65-75% of pleomorphic xanthoastrocytomas with and without anaplasia, 25-60% of gangliogliomas, 20-25% of dysembryoplastic neuroepithelial tumours, and 7% of pilocytic astrocytomas (PAs).1,2 BRAF variants have also been detected in about one-half of epithelioid glioblastomas and in up to 25% of diffuse astrocytic gliomas in children and young adults.3 The detection of a BRAF sequence variant has diagnostic implications in specific tumours, such as pleomorphic xanthoastrocytomas, ganglioglioma, dysembryoplastic neuroepithelial tumour, or epithelioid glioblastoma. Moreover, the detection of the variant can help to distinguish a ganglioglioma from the cortical infiltration of a diffuse glioma. 

Besides its diagnostic value, BRAF sequence variants may allow for targeted therapy against mutant BRAF p.V600 protein. In paediatric low grade gliomas, the BRAF p.V600E sequence variant has been linked to poor response to conventional cytotoxic therapy and poor prognosis.4 In routine settings, BRAF p.V600E can be identified by IHC or by molecular approaches, such as high-resolution melting analysis, pyrosequencing, allele-specific quantitative polymerase chain reaction (ASQ-PCR), droplet-based digital PCR (ddPCR), NGS and Sanger sequencing.5 Although Sanger sequencing is a well-established tool to detect BRAF p.V600E and other rarer BRAF variants, it has a detection threshold of 20% (of mutant alleles). In samples that contain a minority of mutant cells, molecular methods with much lower thresholds, such as ASQ-PCR, ddPCR , or NGS, are more sensitive.

BRAF p.V600E immunohistochemistry
Immunohistochemistry (IHC) is a commonly used method to detect BRAF p.V600E mutant protein in formalin fixed paraffin embedded (FFPE) tissue of CNS tumours. Monoclonal antibodies (such as clone VE1 and clone V600E) against BRAF p.V600E are commercially available. Clone VE1 is the most widely used and is sensitive and specific.6 The concordance between IHC and detection of the BRAF p.V600E variant by molecular genetic techniques demonstrates variability between studies in different types of neoplasms, but the overall concordance is strong.6 IHC plays a key role when FFPE material available is not sufficient for molecular genetic analysis and when low tumour cell content may lead to false-negative results. 

BRAF rearrangement/duplication
Circumscribed duplication of the BRAF locus is a common copy number variation (CNV) that occurs in PAs of the cerebellum, hypothalamus, or optic chiasm, but may occur in PAs from other sites as well. 

The mitogen-activated protein kinase (MAPK) signalling pathway is a key signalling pathway in the development of PA. The major alterations leading to constitutive activation of MAPK in PAs are gene fusions and missense variants involving BRAF, in particular BRAF p.V600E.

Identification of the KIAA1549::BRAF fusion has been used as a diagnostic marker for PAs. It has also been observed in pilomyxoid astrocytoma, ganglioglioma and diffuse leptomeningeal glioneuronal tumour (DLGNT). KIAA1549::BRAF fusions, while all coding for a fusion protein that includes the activating BRAF kinase domain, can be derived from at least nine different fusion site combinations. This makes RT-PCR a difficult method to identify or exclude all variants of the fusion gene. ISH analysis or ddPCR, which demonstrates the tandem duplication at 7q34, is an indirect way to indicate the presence of a KIAA1549::BRAF fusion. However, BRAF copy number gains due to trisomy 7 or whole 7q gains are common in glioblastomas, IDH-wildtype, and should not be mistaken as circumscribed BRAF duplication or BRAF fusion. 

RNA sequencing can identify all types of BRAF and RAF1 fusion variants in a single experiment. Also, because of its association with a tandem duplication, the presence of a KIAA1549::BRAF fusion can often be inferred from the CNV plot as obtained by methylation profiling.7

Investigation of BRAF alteration is a core element for polymorphous low grade neuroepithelial tumour of the young and ganglioglioma; also, BRAF alteration is a frequent cause MAPK pathway activation which is a core element for PA.
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	Core
	C19MC ALTERATIONSc
	· Indeterminate
· Absent
· Present with low level gain
· Present, describe including copy number 

TESTING METHOD 
(select all that apply)
· ISH
· Array-based method
· NGS
· Other, specify
LIN28A expression (IHC)c
· Indeterminate
· Negative
· Positive
	Demonstration of C19MC (C19MC microRNA cluster) alteration is required for the diagnosis of the most frequent molecular subtype of embryonal tumour with multilayered rosettes (ETMR).1 This alteration consists of C19MC amplification or fusion, typically a focal high-level amplicon of chromosome 19q13.42 covering a large, poorly characterised microRNA cluster and the miR-371-373 locus, which map about 100 kb apart. The width and the level of gains at this locus, as assessed by array-comparative genomic hybridisation (array-CGH), are variable but always encompass the same miRNA cluster. 

Even in the absence of multilayered rosettes, a CNS embryonal tumour with C19MC alteration is diagnosed as ETMR, C19MC-altered.2 In routine neuropathological practice, fluorescence in situ hybridisation (FISH) or chromogenic ISH, or high-resolution cytogenetic techniques (e.g., array-CGH, single nucleotide polymorphism (SNP) arrays, methylation arrays) can be used to detect amplification of the C19MC region. 

A small subset of ETMRs carry DICER1 sequence variants. ETMRs lacking C19MC and DICER1 alterations are designated as ETMR, NEC, and those that are not tested for these alterations or in which the test results are inconclusive as ETMR, NOS.2 

Investigation of C19MC alteration is a core element for embryonal tumour with multilayered rosettes.

References
1	Ceccom J, Bourdeaut F, Loukh N, Rigau V, Milin S, Takin R, Richer W, Uro-Coste E, Couturier J, Bertozzi AI, Delattre O and Delisle MB (2014). Embryonal tumor with multilayered rosettes: diagnostic tools update and review of the literature. Clin Neuropathol 33(1):15-22.
2	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 
	c Only core for some tumours - refer to Tables 3-5.

	Core
	CDKN2A/B DELETIONc
	· Indeterminate
· Absent
· Homozygous deletion
· Hemizygous/heterozygous deletion 
TESTING METHOD 
(select all that apply)
· ISH
· Array-based method
· NGS
· Other, specify
	Homozygous deletion of the CDKN2A/B (cyclin-dependent kinase inhibitor 2A/B; 9p21.3) genes are associated with higher grade diffuse gliomas and have been introduced in the WHO CNS 5th edition (CNS5) Tumour Classification as a marker for CNS WHO grade 4 IDH-mutant astrocytomas.1 

In addition, CDKN2A/B homozygous deletions have been shown to be a characteristic genetic feature in pleomorphic xanthoastrocytomas, occurring in up to 87% of cases in one series. In this situation, along with BRAF p.V600E variant, the CDKN2A/B homozygous deletions do not connote more aggressive behaviour.2 

In meningiomas, homozygous deletion of CDKN2A/B is associated with aggressive clinical behaviour and has been introduced as a genetic marker for CNS WHO grade 3 in the WHO CNS5 Tumour Classification.

In neuropathological practice, high-resolution cytogenetic and molecular techniques (e.g., array-comparative genomic hybridisation (CGH), single nucleotide polymorphism (SNP) arrays, methylation arrays, NGS arrays with copy number plots, ddPCR) can be used to detect homozygous CDKN2A/B deletions.

The CDKN2A gene encodes the p16 protein, which can be detected using IHC. However, loss of p16 nuclear staining cannot be recommended as a substitute for assessing homozygous CDKN2A deletion. In contrast, in one study IHC for MTAP (S-methyl-50-thioadenosinephosphorylase, a product of the MTAP gene which is located on chromosome 9p21 in close proximity to the CDKN2A and CDKN2B loci) was found to show an excellent correlation with CDKN2A/B status.3

Investigation of CDKN2A/B alteration is a core element for astrocytoma, IDH-mutant; diffuse low grade glioma, MAPK pathway-altered; desmoplastic infantile ganglioglioma; and meningioma.
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	Core
	CHROMOSOMAL ARM 1p/19q CODELETIONc
	· Indeterminate
· Absent
· None detected 
· 1p/19q codeletion 
· 1p only deletion 
· 19q only deletion 
· Polysomy, specify 
TESTING METHOD 
(select all that apply)
· ISH
· Array-based method (including methylation arrayse)
· PCR/Loss of heterozygosity assay
· NGS
· Other, specify
	Whole-arm deletions of chromosome arms 1p and 19q together with IDH1 (isocitrate dehydrogenase (NADP(+)) 1) or IDH2 missense variants constitute the diagnostic criteria for oligodendroglioma, IDH-mutant and 1p/19q-codeleted, CNS WHO grades 2 or 3.1 

Of note, only whole-arm 1p/19q codeletion combined with an IDH missense variant is diagnostically relevant. Partial deletions on either chromosome arm may be found in other types of diffuse gliomas, including IDH-wildtype glioblastomas, and are neither diagnostic for IDH-mutant and 1p/19q-codeleted oligodendroglial tumours1 nor associated with favourable patient outcome.2 Moreover, detection of 1p/19q codeletion in the absence of IDH mutation is suspicious of partial deletions which can be encountered in IDH-wildtype glioblastoma.

Various techniques are being used for the diagnostic assessment of 1p/19q codeletion. Commonly used methods include microsatellite analysis for loss of heterozygosity (LOH), FISH or chromogenic in situ hybridisation (CISH), and multiplex ligation-dependent probe amplification (MLPA), and methylation arrays. 

Fluorescence or chromogenic in situ hybridisation can be applied to routine FFPE sections. However, analysis is often restricted to single loci on each chromosome arm, which may not reliably distinguish whole-arm losses from partial deletions. In addition, polysomies of chromosomes 1 or 19 may complicate diagnostic assessment and have been associated with less favourable outcomes.3 

Loss of heterozygosity (LOH) analysis and MLPA assess multiple loci along each chromosome arm and thereby reduce the risk of false-positive findings due to partial deletions. However, extraction of tumour DNA (and for LOH ideally also of non-tumour DNA extracted from a blood or buccal swab sample) is required for these techniques. 

Microarray-based approaches may also be used for diagnostic purposes, including DNA methylation bead arrays that allow for simultaneous detection of 1p/19q codeletion, MGMT promoter methylation, and glioma CpG island methylator phenotype (G-CIMP) status indicative of IDH mutation.4 

Panel-based NGS approaches have been used for 1p/19q detection and simultaneous sequence alteration analyses of IDH1 and IDH2, as well as other alterations commonly associated with 1p/19q codeletion, such as TERT promoter and CIC variants. In addition, droplet-based digital PCR (ddPCR) approaches based on single nucleotide polymorphisms (SNPs) on 1p and 19q may be used. 

The use of an antibody panel including H3K28me3 (H3K27me3), H3 p.K28M (H3 p.K27M) mutant protein, IDH1 p.R132H,5 vimentin, and ATRX,6 has been reported as greatly facilitating recognition of oligodendrogliomas, IDH-mutant and 1p/19q-codeleted. However, these immunohistochemical approaches are not sufficient to substitute for 1p/19q codeletion testing and hence establishing the diagnosis of IDH-mutant and 1p/19q-codeleted oligodendroglioma.

Investigation of 1p/19q alteration is a core element for oligodendroglioma, IDH-mutant and 1p/19q-codeleted as was for astrocytoma, IDH-mutant; investigation of 1p copy number loss is a core element for diffuse leptomeningeal glioneuronal tumour.
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	Core
	CHROMOSOME 7 GAIN (COMBINED WITH CHROMOSOME 
10 LOSS)c
	· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· ISH
· Array-based method
· NGS
· Other, specify
	Based on robust evidence in the literature, the Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy – Not Official WHO (cIMPACT-NOW) update 3 recommended in 2018 the use of combined whole arm chromosome 7 gain and whole arm chromosome 10 loss (+ 7/− 10) as a molecular criterion sufficient for identifying a histologically lower grade appearing (grade 2 or 3) IDH-wildtype diffuse astrocytic glioma, as glioblastoma IDH-wildtype (CNS WHO grade 4), especially in the elderly.1 This recommendation has been adopted by the WHO CNS 5th edition (CNS5) Tumour Classification.2

Partial gains on chromosome 7 and partial losses on chromosome 10 exhibited a diagnostic and prognostic value similar to that of complete +7 (trisomy 7) or complete -10 (monosomy 10).3 Methods to detect the +7/-10 marker include ISH, droplet-based digital PCR (ddPCR), multiplex ligation-dependent probe amplification (MLPA), NGS, and array-based techniques including those used for methylome profiling.  

Investigation of chromosome 7 gain combined with chromosome 10 loss (+7/-10) is a core element for glioblastoma, IDH-wildtype.
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	Core
	CIC ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify
	The CIC (capicua transcriptional repressor) gene (19q13.2), or rarely ATNX1/ATNXL1 (ataxin-1; 6p22.3) gene fusion, is currently considered a requirement for the diagnosis of CIC-rearranged sarcoma, regardless of whether it arises within the CNS, soft tissue, bone, or viscera. Although originally considered ‘Ewing-like’ or part of the ‘Ewing sarcoma family’ of related undifferentiated round cell sarcomas, it has since been distinguished as a unique tumour type with a significantly worse prognosis than that of Ewing sarcoma.1 

Potentially useful surrogate immunostains include CD99 (less extensive than Ewing sarcoma), WT1, ETV4, calretinin, MYC, NUT (for CIC::NUTM1 fusion cases), and DUX4 (for CIC::DUX4 fusion cases).2-7 However, a definitive diagnosis requires molecular confirmation to detect gene fusions via different techniques, such as ISH, RT-PCR, NGS (RNA or DNA), or anchored multiplex PCR. Methylation profiling may also be diagnostically useful, given that these tumours have a unique cluster that is distinct from other tumour types in the differential diagnosis. 

CIC-rearranged and ATNX1-rearranged sarcomas of the CNS cluster together with their soft tissue counterparts, suggesting that they are likely the same tumour type despite the differing frequencies of fusion partners.6,8 Nevertheless, additional cases need to be studied to confirm this initial impression. 

CIC gene alterations are also common in IDH-mutant and 1p/19q-codeleted oligodendrogliomas, although they typically consist in sequence variants in that tumour type.9-11

Investigation of CIC alteration is a core element for CIC-rearranged sarcoma.
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	Core
	DICER1 ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify
	The DICER1 (dicer 1, ribonuclease III; 14q32.13) gene encodes the Dicer protein - a ribonuclease (RNase) III endoribonuclease that assists in producing microRNA (miRNA), which regulates gene expression at the posttranscriptional level. Most sequence variants in this gene lead to an abnormally short DICER protein, which is likely unable to produce miRNA. Without regulation by miRNA, genes may be expressed abnormally, causing cells to grow and divide uncontrollably, leading to tumour formation.

A heterozygous DICER1 germline variant with low penetrance causes DICER1 syndrome, a rare autosomal dominant genetic tumour syndrome.4 Individuals with such a variant have an increased risk of developing many types of tumours due to the acquisition of a secondary somatic missense variant in DICER1 in one of the five hotspot codons in the RNase IIIb domain.4

Primary intracranial DICER1-altered lesions include pineoblastoma, pituitary blastoma, primary intracranial sarcoma, and ETMRs lacking C19MC alteration. These tumours can have overlapping histological features, with primitive mesenchymal differentiation, rhabdomyoblastic and chondroid features, as well as spindle cell patterns.

Identification of a somatic DICER1 pathogenic variant in tumour tissue may suggest the presence of a germline DICER1 pathogenic variant.4 Identifying a heterozygous germline pathogenic variant in DICER1 establishes the diagnosis of DICER1 syndrome. Molecular genetic testing approaches include gene-targeted and more comprehensive genomic testing, such as exome and genome sequencing.

Investigation of DICER1 alteration is a core element for embryonal tumour with multilayered rosettes; primary intracranial sarcoma, DICER-mutant; and pituitary blastoma.
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	Core
	EGFR ALTERATIONSc
	EGFR amplification
· Indeterminate
· Absent
· Absent with low level gain 
· Present, describe including copy number 

TESTING METHOD 
(select all that apply)
· ISH 
· Array-based method 
· NGS 
· Other, specify
EGFR variants (e.g., EGFRvIII or EGFR single nucleotide variants)
· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· NGS 
· PCR-based method 
· IHC 
· Other, specify
	The EGFR (epidermal growth factor receptor; 7p12) gene is the most commonly amplified proto-oncogene in gliomas.1 EGFR amplification is detectable in approximately 40% of IDH-wildtype glioblastomas (CNS WHO grade 4) and is particularly common in tumours from adult patients with the classic or RTK2 molecular subtype of glioblastoma.2,3 Other CNS tumours that may carry EGFR amplifications include subsets of paediatric-type high grade glioma, IDH-wildtype and H3-wildtype, and rare instances of diffuse midline glioma, H3 K27-altered.

EGFR amplification is commonly associated with missense variants and genetic rearrangements, the most common of which, EGFRvIII, being detectable in about 50% of EGFR-amplified glioblastomas.4,5 EGFRvIII carries a unique peptide encoded by the fusion site of exons 1 and 8 that has served as a tumour-specific epitope for anti-EGFRvIII immunotherapy.6 

In adult-type diffuse gliomas, EGFR amplification (+/- EGFRvIII) is virtually restricted to glioblastoma, IDH-wildtype. The Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy – Not Official WHO (cIMPACT-NOW) update 3 recommended in 2018 the use of EGFR amplification as a molecular criterion sufficient for identifying a histologically lower grade appearing (grade 2 or 3) IDH-wildtype diffuse astrocytic glioma as glioblastoma, IDH-wildtype (CNS WHO grade 4).7 This recommendation has been adopted by the WHO CNS 5th edition (CNS5) Tumour Classification.

Detection of EGFR amplification or EGFRvIII positivity also may be clinically relevant as a predictive marker of response to molecularly-guided therapies targeting EGFR and/or EGFRvIII.8,9 

EGFR amplification is usually seen in the majority of neoplastic cells in a given tumour and can be readily detected by ISH on routine FFPE tissue sections, although amplification levels may be heterogeneous from cell to cell. Targeted molecular techniques based on extracted tumour DNA, such as RT-PCR and multiplex ligation-dependent probe amplification (MLPA), are also suitable for diagnostic detection of EGFR amplification. Microarray-based genomic or epigenetic analyses, as well as NGS approaches, are increasingly being used.10 

Gene amplification (defined by a circumscribed high-level copy number gain of the EGFR gene at 7p12) needs to be distinguished from low-level copy number gains of chromosome 7 caused by numerical chromosomal abnormalities, in particular trisomy 7, which is a frequent alteration in IDH-wildtype glioblastomas11 (see also CHROMOSOME 7 GAIN (COMBINED WITH CHROMOSOME 10 LOSS). To date, there is no evidence that different levels of EGFR gene amplification (e.g., increases in copy number of 10-fold versus 100-fold) have distinct diagnostic or prognostic impact.

Detection of EGFRvIII in EGFR-amplified glioblastomas can also be performed at the DNA level, e.g., by MLPA, microarray-based techniques and NGS. However, detection at the mRNA or protein level using RT-PCR or IHC with EGFRvIII-specific antibodies appears to be more sensitive.4 This is due to the fact that EGFRvIII positivity usually shows regional heterogeneity and sometimes affects only a minor subset of the tumour cells.4 Thus, representative sampling of tumour tissue is an important issue to avoid false-negative testing for EGFRvIII. Unfortunately, precise cut-off values for the distinction between high- and low-level copy number gains have not been defined and may need to be adjusted for each testing method.

Investigation of EGFR alteration is a core element for glioblastoma, IDH-wildtype; diffuse midline glioma, H3K27-altered; and diffuse paediatric-type high grade glioma, H3- and IDH-wildtype.
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	Core
	EZHIP EXPRESSION (IHC)c
	· Indeterminate
· Negative
· Positive 

	Nuclear overexpression of EZHIP protein (enhancer of zest homologs inhibitory protein; EZHIP gene located on Xp11.22) protein results in loss of nuclear H3 p.K28me3 (K27me3) expression in posterior fossa group A (PFA) ependymomas and in a subset of diffuse midline gliomas, H3 K27-altered. In these tumours, the EZHIP protein conformationally mimics the structure of oncogenic H3 p.K28M variants and disrupts the activity of the PRC2 complex.1,2 EZHIP overexpression can be demonstrated by antibodies for the EZHIP protein3,4 or by RNA expression analysis.

Investigation of EZHIP expression is a core element for diffuse midline glioma, H3K27-altered.
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	Core
	FET ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify
	Fusions between members of the FET (nearly always EWSR1, but rarely FUS) and CREB (CREB1, CREM or ATF1) gene families help define a novel CNS tumour type referred to as intracranial mesenchymal tumour, FET::CREB fusion-positive.1,2 Given the histopathologic and genetic overlap with another rare soft tissue tumour type, prior cases have often been diagnosed as angiomatoid fibrous histiocytoma;3 however, recent methylation profiling studies suggest that these are likely two different entities.2 

An immunohistochemical profile with combined EMA, CD99, and desmin should raise suspicion for this tumour type, but is not entirely specific.1,3 As such, confirmation of a FET::CREB fusion should be attained using various methodologies, including ISH, RT-PCR, NGS (RNA or DNA), and anchored multiplex PCR. Methylation profiling studies suggest that there may be two distinct epigenetic subtypes with differing clinicopathologic and prognostic associations.2 However, further studies are needed to confirm these findings in larger cohorts.

Investigation of FET alteration is a core element for intracranial mesenchymal tumour, FET::CREB fusion-positive; and Ewing sarcoma.
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	Core
	FGFR FAMILY ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe 
TESTING METHODd
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify
	The FGFR (fibroblast growth factor receptor) family comprises four highly conserved transmembrane tyrosine kinase receptors, encoded by FGFR1 (8p11.23), FGFR2 (10q26.13), FGFR3 (4p16.3) and FGFR4 (5q35.2), and one kinase-lacking core receptor (FGFR5; gene location 4p16.3). These growth factor receptors trigger downstream signalling pathways implicated in tumourigenesis, including the mitogen activated protein kinase (MAPK) pathway and the phosphoinositide-3-kinase (PI3K)/Akt pathways. FGFR plays key roles in CNS development, and in the context of neoplastic transformation it modulates tumour cell migration, differentiation, proliferation, and survival as well as angiogenesis. 

FGFR gene alterations involve a broad spectrum of mutational types, such as hotspot point variants, fusions, internal domain duplication (ITD).1 They are most commonly found in low grade glial or glioneuronal tumours, and less frequently in high grade gliomas. FGFR1 hotspot variants are found across multiple tumour types, such as in pilocytic astrocytomas (PA), rosette forming glioneuronal tumour, dysembryoplastic neuroepithelial tumour, occasionally ganglioglioma and the rare diffuse low grade glioma, MAPK pathway-altered.1 These hotspot variants have also been described in H3 K27M-altered diffuse midline gliomas and in diffuse gliomas in children and adults. 

FGFR1::TACC1 fusions are common in extraventricular neurocytoma. FGFR2::CTNNA3 fusions are characteristic of polymorphous low grade neuroepithelial tumour of the young.1 In IDH-wildtype glioblastomas, FGFR3::TACC3 fusions are rare events but are associated with distinct morphologic features (e.g., calcification, ‘chicken-wire’ capillaries, and bland oligodendrocyte-like cytology) and a better prognosis;2 they are also mutually exclusive with EGFR amplifications.1

Histologically, many tumours with FGFR alterations show neurocytic or oligodendroglioma-like histological features.1 

There are no single useful histological or immunohistochemical surrogate markers to detect FGFR alterations. Therefore, the diagnostic approach usually requires a combination of methylome profiling, to narrow down or determine the tumour type (methylation class), and NGS to confirm DNA sequence variants or fusions (e.g., by DNA or RNA NGS, respectively). 
FGFR alterations are clinically relevant, not only because of their diagnostic implications, but also because they may represent targets for cancer therapies,3,4 although evidence of efficacy in CNS tumours needs further evaluation.5

Investigation of FGFR alteration is a core element for polymorphous low grade neuroepithelial tumour of the young; and dysembryoplastic neuroepithelial tumour.
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	Core
	FOXR2 ALTERATIONSc
	· Indeterminate
· Absent
· Present, describe 
TESTING METHOD 
(select all that apply)
· IHC
· ISH
· NGS
· Other, specify
	Fusions accompanied by high levels of expression of the FOXR2 (forkhead box R2; Xp11.21) gene in a CNS neoplasm with primitive neuroectodermal morphologic features are diagnostic of CNS neuroblastoma, FOXR2-activated. 

FOXR2 fusions and resulting overexpression are best demonstrated using RNA sequencing techniques. The alterations are most commonly intragenic duplication events involving the FOXR2 gene, or less commonly, intergenic translocations with non-recurrent partner genes.1 Where RNA sequencing is not available, methylome profiling may be used to classify CNS neuroblastoma, FOXR2-activated. Surrogate immunohistochemical profiles combined with copy number alterations have also been proposed as sensitive and specific surrogate markers for CNS neuroblastoma, FOXR2-activated, namely: OLIG2, synaptophysin and SOX10 immunopositivity; vimentin negativity; and 1q gain.2	
Investigation of FOXR2 alteration is a core element for CNS neuroblastoma, FOXR2-activated.
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	Core
	HISTONE H3 VARIANTS AND LOSS OF H3 p.K28me3 (K27me3)c
	Histone H3 gene family variants 
· Indeterminate 
· Negative 
· Positive for K27M 
· Positive for G34R or G34V 
· Positive, for other H3 variants, specify
TESTING METHOD 
(select all that apply)
· Sanger sequencing
· NGS
· PCR-based method
· IHC 
     Histone H3 K27M expression
· Indeterminate
· Negative
· Positive
     Histone H3 G34R expression
· Indeterminate
· Negative
· Positive
     Histone H3 K27me3 expression
· Indeterminate 
· Intact expression 
· Loss of expression 

· Other, specify
	Various molecular methods can be used to detect the H3 p.K28M (K27M) variant, including pyrosequencing, TaqMan PCR, droplet-based digital PCR (ddPCR), Sanger sequencing, and NGS. A similar array of methods can be used for H3.3 p.G35 (G34) variants; however, due to the GC rich nature of this region, targeted methods can be more difficult to design. For detection of both variants using targeted methods (and alignment of non-targeted methods), consideration needs to be given to the high degree of homology among the H3 genes (human H3 variants include H3.3, H3.1, H3.2, CENP-A, H3t, H3.X and H3.Y) and the number of genes encoding each protein (H3.3 is encoded by two genes, H3F3A and H3F3B, while H3.1 and H3.2 are each encoded by multiple genes found within gene clusters). The exact gene being tested, and the method used should be provided in the report. In addition, variant-specific antibodies are available that can reliably be used on FFPE tissue to detect H3 p.K28M (K27M), H3 p.G35R (G34R) and H3 p.G35V (G34V) variants. Of note, according to the recently revised nomenclature of (human) histone genes H3F3A (1q42.12) is now H3-3A, and H3F3B (17q25.1) is now H3-3B.1

Histone H3 p.K28M (K27M) variant (sequencing) and expression (immunohistochemistry)
Recurrent sequence variants in H3-3A (H3.3) or  H3C2/3/11 (H3.1) are characteristic of diffuse midline gliomas, H3K27-altered. Very rarely H3C14 (H3.2), with lysine 28 (27) substituted for methionine (H3 p.K28M (K27M)) or isoleucine (H2 p.K27I) also indicate diffuse midline glioma, H3 K27-altered. 

These tumours can arise across a broad spectrum of ages and midline locations, including older adults, but are most frequently encountered in the paediatric age group in the pons. In teenagers and young adults, non-pontine locations are more frequent, including the spinal cord, thalamus and cerebellum.2 These tumours overall have a poor prognosis (median survival approximately 12 months) with older age at presentation and receipt of radiotherapy associated with modestly better survival. 

The H3 p.K27M variant can also be found in diffuse astrocytomas without classic high grade features that generally behave more aggressively than their wild type counterparts. In occasional cases, this variant has been found in other tumour types, including ganglioglioma, pilocytic astrocytoma (PA) and ependymoma. The outcome for patients with circumscribed low grade gliomas with H3 p.K27M variants is worse than their wildtype counterparts. Data on a small number of cases shows no outcome difference between posterior fossa group A (PFA) ependymomas with and without the H3 K27M variant, however.3-5 

Testing for this alteration should be considered, in patients with midline diffuse gliomas. These alterations can be identified by sequencing or a variant-specific antibody. Detection of the variant by either IHC or sequencing is required for the diagnosis of the H3 p.K27M mutant subtypes of diffuse midline glioma, H3 K27-altered. Lack of H3 K27me3 is not a specific marker for H3 p.K27M.

Immunohistochemistry (IHC) with an antibody against the N-terminus of the mutant protein is highly sensitive and specific for detection of the H3 p.K28M (K27M) protein from either H3.3 or H3.1. In practice, the antibody can produce a fair amount of background cytoplasmic staining in non-tumour cells and only diffuse strong nuclear staining in most (or all) tumour cells should be considered positive. Further, poorly fixed tissue or tissue from post-mortem or older blocks may be false negative. If equivocal, a molecular method should be considered as the standard of care. 


Histone H3 p.G35R (G34R) or p.G35V (G34V) variants (sequencing) and expression (immunohistochemistry)
Recurrent variants in H3-3A (H3.3) with glycine 35 substituted for arginine (H3 p.G35R) or infrequently valine (H3 p.G35V) are found most commonly in diffuse hemispheric high grade gliomas of the adolescent and young adult population.6 The H3 p.G35R variant is found in approximately 15-20% of hemispheric high grade glioma cases in the paediatric age group.7 Testing for this alteration should be considered, in hemispheric, IDH-wildtype, high grade gliomas, particularly if ATRX is lost and p53 is diffusely immunopositive. These alterations can be identified by sequencing, PCR or variant-specific antibodies against H3.3 p.G35R or H3.3 p.G35V.

In practice, the antibody works well for IHC on FFPE tissue with specific nuclear staining but does not stain all tumour cells; as a result, sensitivity may be an issue. If IHC results are equivocal or if suspicion for an H3 p.G35R/V variant is high, a molecular method should be considered as the standard of care.

Loss of H3 p.K28me3 (H3 K27me3) expression (immunohistochemistry)
The presence of the H3 p.K28M (K27M) mutant protein is associated with a fairly widespread (and thus detectable on Western blot or IHC) loss of the repressive trimethyl (me3) mark on H3 lysine 28 (H3 p.K28me3), often written as H3K27me3 when referring to the protein or antibody. Tumour cells harbouring the H3 p.K28M variant (either H3.1 or H3.3 p.K28M) will typically show loss of nuclear expression of H3K27me3 on IHC with retention of staining in entrapped non-neoplastic cells, e.g., endothelial cells (similar to the pattern seen with ATRX or INI1). However, it should be noted that while loss of H3K27me3 is sensitive for detection of H3 p.K27M variant tumours, it is not specific. 

Other tumours, notably malignant peripheral nerve sheath tumours and PFA ependymomas,8 will also show loss of H3 K27me3. In fact, this lack of nuclear H3 K27me3 immunoreactivity is considered an essential diagnostic criterion for PFA ependymomas.8-10 
Similarly, in some H3-wildtype cases, partial loss may be seen. Thus, while helpful for confirmation when combined with an H3 p.K27M stain, loss of H3K27me3 staining by itself should be considered a non-specific surrogate marker for identifying H3 p.K27M-mutant diffuse midline gliomas. 

In non-H3 pK27M-mutant subtypes of diffuse midline glioma, H3K27me3 is typically lost in combination with either EZHIP overexpression or an EGFR gene alteration. 

Investigation of histone H3 variants and/or of H3 p.K28me3 alteration is a core element for glioblastoma, IDH-wildtype; diffuse astrocytoma, MYB- or MYBL1-altered; diffuse low grade glioma, MAPK pathway-altered; diffuse midline glioma, H3K27-altered; diffuse hemispheric glioma, H3G34-mutant; diffuse paediatric-type high grade glioma, H3- and IDH-wildtype; and posterior fossa ependymoma, group A.
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	Core
	IDH1/IDH2 ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe  
TESTING METHOD 
(select all that apply)
· Sanger sequencing
· NGS
· PCR-based method
· IHC 
     IDH1 R132H expression
· Indeterminate
· Negative
· Positive 

· Other, specify

	IDH (isocitrate dehydrogenase) is an enzyme that exists in five isoforms, each of which catalyses the reaction of isocitrate to α-ketoglutarate. Hotspot missense variants in IDH1 (2q34) or IDH2 (15q26.1) diagnostic markers for astrocytomas, IDH-mutant, CNS WHO grades 2-4 and oligodendroglioma, IDH-mutant and 1p/19q-codeleted, CNS WHO grade 2 or 3.1 

The mutant IDH1 and IDH2 proteins lead to the production of the oncometabolite 2-hydroxyglutarate, which inhibits the function of numerous α-ketoglutarate–dependent enzymes. Inhibition of the family of histone demethylases and the ten-eleven translocation (TET) family of 5-methylcytosine hydroxylases has profound effects on the epigenetic status of mutated cells and leads to G-CIMP. 

IDH2 variants are much less frequent than IDH1 variants in diffuse gliomas, but are enriched in IDH-mutant and 1p/19q-codeleted oligodendrogliomas and in infratentorial IDH-mutant astrocytomas.2

A monoclonal antibody has been developed to the IDH1 p.R132H protein that allows for the detection of the most common type of IDH variant by IHC. The ability of the antibody to detect individual IDH R132H-mutant cells within a normal background (e.g., in the infiltration zone of an IDH-mutant diffuse glioma), makes this method more sensitive than Sanger sequencing for identifying p.R132H-mutant gliomas.3 However, IDH2 variants and other less common IDH1 variants cannot be detected using IHC with this antibody, and in the appropriate clinical setting, it may be necessary to test for other IDH1 and IDH2 variants by sequencing analysis. The WHO CNS 5th edition (CNS5) Classification recommends that sequencing may not be warranted in the setting of a negative p.R132H immunostain in glioblastomas arising in patients older than 55 years due to the rarity of non-R132H IDH1 and IDH2 variants in patients in this age group.4 By contrast, all diffusely infiltrating gliomas with CNS WHO grade 2 and 3 histology that lack IDH1 p.R132H positivity by IHC should be assessed for less common IDH1 or IDH2 variants by sequencing or other appropriate methods. Methylome profiling does not detect an IDH1 or IDH2 oncogenic variant as such, but the DNA methylome ‘fingerprint’ is a very reliable surrogate marker for IDH-mutant status of diffuse gliomas.5

Investigation of IDH alteration is a core element for astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant and 1p/19q-co-deleted; glioblastoma, IDH-wildtype; diffuse astrocytoma, MYB- or MYBL1-altered; polymorphous low grade neuroepithelial tumour of the young; diffuse low grade glioma, MAPK pathway-altered; diffuse paediatric-type high grade glioma, H3- and IDH-wildtype; and extraventricular neurocytoma.
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	Core
	MAPK PATHWAY ALTERATIONSc
	· Indeterminate 
· Absent 
· NF1 loss, describe  

For BRAF-KIAA1549 alterations refer to BRAF ALTERATIONS

For FGRFR alterations refer to FGFR FAMILY ALTERATIONS

· Positive for other MAPK alteration, describe
TESTING METHODd
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify      
	The MAPK signalling pathway is a complex cellular signalling system involved in regulating a wide variety of cellular processes, including cell growth, differentiation, apoptosis, and response to stress. The pathway translates a diverse range of extracellular stimuli - including growth factors, cytokines, and environmental stressors - into cellular responses.

Different mechanisms can lead to dysregulation of the MAPK pathway in cancer. One common mechanism is the activation of growth factor receptors, which can stimulate MAPK pathway activation through various downstream signalling molecules. Genetic alterations in the MAPK pathway genes, such as BRAF, NRAS, KRAS and NF1, can also lead to hyperactivation and contribute to cancer development.

The MAPK pathway is frequently dysregulated in gliomas,1 and this dysregulation is associated with increased proliferation and reduced apoptosis, leading to tumour growth and progression. The activation of the MAPK pathway is often driven by alterations in genes encoding the BRAF protein or the NF1 protein. 

The importance of the MAPK pathway in cancer has led to the development of targeted therapies that inhibit its activity. Drugs inhibiting BRAF and/or MEK signalling, two critical components of the pathway, have been approved for treating melanoma and other cancers, including gliomas. However, resistance to these drugs can develop, highlighting the need for continued research into the complex mechanisms that regulate MAPK pathway activity in CNS tumours.

Investigation of MAPK pathway alteration is a core element for polymorphous low grade neuroepithelial tumour of the young; diffuse low grade glioma, MAPK pathway-altered; PA; ganglioglioma; and diffuse leptomeningeal glioneuronal tumour.
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	Core
	METHYLOME PROFILINGc
	See table in the next column Commentary note for value options. 

MGMT promoter status
· Indeterminate 
· Unmethylated
· Methylated 

Most informative copy number variations, specify
	
	Classifier (e.g., Heidelberg Brain Tumour Classifier)
	Version (e.g., 12.5)
	Methylation class
	Score

	
	
	
	

	
	
	
	

	
	
	
	




The categorisation of CNS tumours based on their genome-wide methylome profiles greatly aids their precise classification,1 often in combination with the DNA copy number profile derived from the same array.2 Methylome profiling can: 
1. establish a methylation class (often a surrogate for a diagnosis) for most CNS tumour types including histologically ambiguous CNS tumours of both adult and paediatric patients; 
2. provide a detailed whole genome copy number variation (CNV) profile; 
3. subclassify or risk stratify established tumour types, such as ependymomas, medulloblastomas, or meningiomas based on their methylation fingerprint +/- CNV alterations; and
4. provide information on MGMT promoter methylation status.

Methylome profiling can also be useful as a diagnostic tool for very small biopsies. CNS tumours classified on the basis of their methylome profile generally behave clinically more homogenously than those classified by histology alone.

The determination to perform methylation profiling depends on (i) local availability or access to supra-regional centres, (ii) availability of funding in the respective healthcare system, (iii) ability/knowledge to integrate data by a neuropathologist, as well as (iv) clinical need and relevance to therapy (e.g., risk prognostication of meningiomas). 

The technology used for methylome-based tumour classification is currently mainly based on hybridisation of bead chip arrays from a single supplier. However, other approaches, such as long-read sequencing have been established.3 The processing of the methylation data requires a classification tool, and currently the gold standard for the diagnostic implementation is the DKFZ/Heidelberg classifier for CNS tumours (www.molecularneuropathology.org),1 although alternatives based on the same principle have been established to address accreditation issues or to refine classification.4 

The implementation and acceptance of this technology has substantially empowered the neuropathology community by enabling more accurate, reliable, and reproducible diagnoses. Thus, DNA methylome-based classification has been widely introduced as a diagnostic tool in the WHO CNS 5th edition (CNS5) Tumour Classification.5 In fact, unequivocal classification of certain tumour types, such as high grade astrocytoma with piloid features and paediatric-type high grade diffuse gliomas IDH-wildtype and H3-wildtype, require the demonstration of a tumour type-specific methylome profile.5 

The use of the DNA methylome classifier requires caution and awareness of potential pitfalls.4 Technical and operational risks include recognition of sample mix-up, low DNA amount and poor quality DNA. It is recommended to process reasonably distinct tumour entities on each chip (currently eight samples per chip), and results that cannot be reconciled with patient sex, histology, location, or clinical presentation may require repeat investigation. Interpretational pitfalls arise from incorrect classification results, due to low tumour content, e.g., admixture of CNS tissue, inflammatory cells, tumour recurrences/post-radiotherapy, and tumours arising in genetic tumour syndromes.
 
Generally, low grade glial and glioneuronal tumours can be difficult to classify with the current algorithms.6 The DKFZ/Heidelberg classifier uses calibrated classifier scores to indicate likelihood of the assignment of a tumour to a distinct methylation class,1 with classifier scores >0.9 indicating a significant match. Lower calibrated classifier scores need to be interpreted with caution and may not be reliable indicators of a certain diagnosis but can still provide useful guidance when integrated with results from orthogonal tests.1,4

Copy number variations (CNV) are returned as part of the readout from the methylation array (or from long-read whole genome sequencing), and can complement the diagnosis, provide additional confidence in establishing a diagnosis when the methylome profile is returned with a low calibrated score,2 or form part of a prognostication algorithm, such as in meningiomas.7 Therefore, CNVs (including specific gene deletions or amplifications) should also be included in the report if diagnostically relevant. Gene duplication and/or gene fusions can sometimes also be inferred from the plot but may need confirmation by other methods. Low amplitudes of CNVs may indicate low tumour cell content or clonal heterogeneity in the investigated tissue sample. 

No specific formal recommendations exist currently for how methylome data should be reported. It has been suggested that pathology reports should contain information on: 
1. estimated tumour cell content of the extracted DNA; 
2. amount of DNA input; 
3. estimated tumour cell fraction; 
4. quality of bisulphite conversion; 
5. CNS tumour classifier version(s) used; 
6. highest scoring methylation category with the respective calibrated score(s); and
7. sub-classification with score(s), if applicable.8 

In addition to the DNA copy number profile and assignment to distinct methylation families, classes and subclasses - the DKFZ/Heidelberg classifier provides the MGMT promoter methylation status based on a specific algorithm.9 Generally, there is good concordance with other methods of targeted assessment of MGMT promotor methylation.10,11 However, there is currently no consensus as to which testing method best predicts response to alkylating agent chemotherapy.12

Methylome profiling (MP) is a core element (especially for unresolved lesions) for diffuse astrocytoma, MYB- or MYBL1-altered; diffuse midline glioma, H3K27-altered; diffuse hemispheric glioma, H3G34-mutant; diffuse paediatric-type high grade glioma, H3- and IDH-wildtype; infant-type hemispheric glioma; high grade astrocytoma with piloid features; astroblastoma, MN1-altered; ganglioglioma; desmoplastic infantile ganglioglioma; dysembryoplastic neuroepithelial tumour; diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters; papillary glioneuronal tumour; rosette-forming glioneuronal tumour; diffuse leptomeningeal glioneuronal tumour; central neurocytoma; extraventricular neurocytoma; cerebellar liponeurocytoma; posterior fossa ependymoma, group A; posterior fossa ependymoma, group B; myxopapillary ependymoma; subependymoma; medulloblastoma, WNT-activated; medulloblastoma, SHH-activated and TP53-wildtype; medulloblastoma, SHH-activated and TP53-mutant; medulloblastoma, non-WNT/non-SHH; atypical teratoid/rhabdoid tumour; embryonal tumour with multilayered rosettes; CNS neuroblastoma, FOXR2-activated; CNS tumour with BCOR internal tandem duplication; malignant melanotic nerve sheath tumour; malignant peripheral nerve sheath tumour; cauda equina neuroendocrine tumour; meningioma; pineal parenchymal tumour of intermediate differentiation; papillary tumour of the pineal region; and desmoplastic myxoid tumour of the pineal region, SMARCB1-mutant.
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	Core
	MN1 ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe  
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS
· Other, specify
	According to the WHO CNS 5th edition (CNS5) Tumour Classification, demonstration of an MN1 (meningioma 1; 22q12.1) gene alteration is required for the diagnosis of astroblastoma, MN1-altered.1 These rare glial neoplasms have a strong female predominance and are characterised by relatively compact growth, predominantly perivascular tumour cell arrangement (astroblastic rosette) and perivascular fibrous stroma. 

Fusions between MN1 (22q12.1) and BEN domain containing 2 (BEND2; Xp22.13) or more rarely with CXXC5 (CXXC-type zinc finger protein 5) are characteristic. MN1 is a transcriptional coregulator important in development and is implicated in the pathogenesis of meningioma and acute myeloid leukemia.2,3 Astroblastomas, MN1-altered display a distinct DNA methylome profile. Tumours with astroblastoma-like histology and DNA methylome profile, often located in the spinal cord, have been identified which lack MN1 fusions but feature BEND2 fusions, in particular EWSR1::BEND2 or MAMLD1::BEND2. These tumours likely represent a molecular subtype of astroblastoma, however, have not yet been considered in the WHO CNS5 classification.  

Molecular studies are necessary to evaluate for characteristic MN1 or BEND2 fusions by break apart ISH, PCR, RNA or DNA sequencing. 

Nuclear MN1 immunoreactivity has been described in MN1::BEND2 tumours but not in non-MN1::BEND2 astroblastomas.4 However, the specificity and sensitivity of this biomarker remains to be evaluated. 

Investigation of MN1 alteration is a core element for astroblastoma, MN1-altered.
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	Core
	MYB, MYBL1 ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe  
TESTING METHODd
(select all that apply)
· IHC 
· ISH 
· NGS
· Other, specify
	MYB (v-myb avian myeloblastosis viral oncogene homolog; 6q23.3) and MYBL1 (8q13.1) rearrangements, most commonly gene fusions of MYB or MYBL1 with various partner genes, are diagnostic alterations in diffuse astrocytoma, MYB/MYBL1-altered and in angiocentric glioma, with the latter typically featuring QKI::MYB fusions.113,122 MYB gene amplification is rare.123,124 

Diagnostic detection of MYB or MYBL1 fusions can be performed by targeted next generation fusion panel sequencing or by whole transcriptome sequencing. Alternatively, MYB/MYBL1 alterations can be detected by using interphase ISH. DNA methylome analysis also identifies gliomas with MYB or MYBL1 alterations but cannot distinguish between diffuse astrocytoma, MYB/MYBL1-altered versus angiocentric glioma.123,125

Investigation of MYB or MYBL1 alteration is a core element for diffuse astrocytoma, MYB- or MYBL1-altered.
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	Core
	MYC GENE FAMILY AMPLIFICATION (MYC and/or MYCN)c
	· Indeterminate 
· Absent 
· Absent with low level gain 
· Present, describe including copy number 
TESTING METHODd
(select all that apply)
· ISH 
· Array-based method 
· NGS 
· Other, specify
	The MYC (v-myc avian myelocytomatosis viral oncogene homolog; 8q24.21) protein has a fundamental role in cell proliferation, cell size, differentiation, stem cell self-renewal, and apoptosis. Its deregulation occurs in many cancers including a range of CNS tumours. The MYC transcription factor family also includes its paralogues MYCN and MYCL.1 

MYC, MYCN, and MYCL amplifications are prognostically relevant in medulloblastomas.2 MYC and MYCN gene amplification and fusions are seen in SHH-activated and in non-WNT/non-SHH medulloblastomas, but almost never in the WNT-activated type.2,3 Furthermore, MYCN-amplification is listed in the WHO CNS 5th edition (CNS5) Tumour Classification as an essential diagnostic criterion for spinal ependymoma, MYCN-amplified.4 Rarely, such aggressive spinal ependymomas may show amplification of MYC.5

A commonly used laboratory method to detect MYC gene family amplifications is FISH or CISH. Other approaches include RT-PCR, droplet-based digital PCR (ddPCR), NGS, multiplex ligation-dependent probe amplification (MLPA), or array technologies.

Investigation of MYC or MYCN alteration is a core element for diffuse paediatric-type high grade glioma, H3- and IDH-wildtype; and spinal ependymoma, MYCN-amplified.
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d Repeat for each alteration.

	Core
	PDGFRA ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe including copy number 
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify
	PDGFRA (platelet-derived growth factor receptor, alpha polypeptide; 4q12) gene alterations have been described in several CNS tumour types, including low grade and high grade gliomas as well as glioneuronal tumours. These alterations include gains/amplifications and/or DNA sequence variants of PDGFRA. 

PDGFRA amplifications and/or sequence alterations are found in variable frequency in both paediatric-type and adult-type high grade gliomas, including:
· diffuse paediatric-type high grade gliomas, H3-wildtype and IDH-wildtype;1 
· diffuse midline gliomas, H3 K27-altered;2 
· diffuse hemispheric gliomas, H3 G34-mutant;3 
· glioblastomas, IDH-wildtype;4 and 
· astrocytomas, IDH-mutant (roughly a third of the CNS WHO grade 4 tumours);5 and
· myxoid glioneuronal tumour, (within the right context) dinucleotide mutation in PDGFRA resulting in p.K385L (or p.K385I) being diagnostic for this diagnosis.6-8 

Investigation of PDGFRA alteration is a core element for diffuse paediatric-type high grade glioma, H3- and IDH-wildtype.
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	c Only core for some tumours - refer to Tables 3-5.


	Core
	PITUITARY HORMONES AND TRANSCRIPTION FACTORS IMMUNO-HISTOCHEMISTRYc
	Tumour cells are reactive for 
(select all that apply)
· Indeterminate
· Prolactin 
· Human growth hormone 
· ß-TSH 
· ß-FSH 
· ß-LH 
· Alpha subunit 
· ACTH 
· PIT1 
· TPIT 
· SF1 
· Other, specify
	Standard IHC evaluation of pituitary neuroendocrine tumours/pituitary adenomas can include immunostaining for specific anterior pituitary hormones (prolactin, growth hormone, follicle stimulating hormone, luteinising hormone, thyroid stimulating hormone, alpha-subunit of glycoproteins, adrenocorticotrophic hormone (PRL, GH, FSH, LH, TSH, ASU, ACTH, respectively) and pituitary transcription factors (PIT1, TPIT, SF1).1,2 Other transcriptions factors, including GATA3 and ER, may be useful in certain instances.1 Practical suggestions for evidence-based IHC workup have been published by McDonald (2024).3

Immunohistochemistry (IHC) for these proteins, coupled with cytokeratin (AE1/AE3 or CAM5.2) staining, for presence or absence of rounded cytoplasmic inclusions known as fibrous bodies, allows classification of pituitary tumours/pituitary adenomas for prognosis and medical treatment purposes. 

For diagnostic purposes, some advocate first screening with three antibodies (PIT1, SF1, and TPIT) and then using the other anterior pituitary hormone assays based on initial results.4-6 Others utilise the full panel initially and may variably supplement the panel.7 The proliferation-associated marker Ki-67 (MIB1) is used for evaluation of the proliferative potential of tumours.1,7 There appears to be little utility for p53 IHC, with rare exceptions, such as corticotroph tumours/adenomas.1,8,9

The WHO 5th edition CNS10) and Endocrine11 Classification systems note that: “Special tumour/adenoma subtypes that commonly show aggressive behaviour…include sparsely granulated somatotroph tumour/adenoma, lactotroph tumours/adenomas in men, Crooke cell tumour/adenoma and silent corticotroph tumour/adenoma, and immature PIT1-lineage adenoma (previously called ‘silent subtype 3 adenoma’).”

For tumours of the posterior pituitary gland (granular cell tumour of the sellar region, pituicytoma, spindle cell oncocytoma), nuclear staining for the transcription factor TTF1 is used as a diagnostic marker.12

Investigation of pituitary hormones and transcription factors by IHC is a core element for pituicytoma; granular cell tumour of the sellar region; spindle cell oncocytoma; and pituitary adenoma/pituitary neuroendocrine tumour.
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	c Only core for some tumours - refer to Tables 3-5.


	Core
	PRC2 ALTERATIONc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify
	PRC2 (polycomb Repressive Complex 2) is an epigenetic regulator that is frequently inactivated in malignant peripheral nerve sheath tumours (MPNSTs). 

In MPNSTs, loss-of-function genetic alterations or epigenetic silencing of PRC2 components, such as EZH2 (Enhancer of Zeste Homolog 2) or SUZ12 (Suppressor of Zeste 12), results in reduced H3K27me3 levels at target gene promoters. Consequently, this dysregulation leads to the activation of genes promoting tumour progression. 

H3K27me3 loss has been shown to be a relatively specific marker for MPNSTs and may be helpful in the differential diagnosis to distinguish MPNSTs from histologic mimics, especially when supportive Schwann cell markers are absent.1

Components of the PRC2 complex, such as EZH2, represent therapeutic targets undergoing clinical trials and further research. 

Investigation of PRC2 alteration is a core element for malignant peripheral nerve sheath tumour.
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	Core
	PRKAR1A ALTERATIONc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify
	PRKAR1A (protein kinase, cAMP-dependent, regulatory, type I, alpha; 17q24.2) encodes the regulatory subunit of cyclic AMP-dependent protein kinase A (PKA) and is associated with Carney complex, a syndrome characterised by an increased risk of several types of tumours, including malignant melanotic nerve sheath tumours. These nerve sheath tumours demonstrate frequent loss of function alterations in PRKAR1A.1 PRKAR1A alterations can be in the form of single base pair substitutions, deletions and insertions, or rearrangements. 

Loss of PRKAR1A expression can also be detected using IHC.

Investigation of PRKAR1A alteration is a core element for malignant melanotic nerve sheath tumour.
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	Core
	PRKCA ALTERATIONc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify
	PRKCA (protein kinase C alpha; 17q24.2) encodes a protein kinase involved in cellular signalling pathways related to proliferation and differentiation. PRKCA alterations, including gene rearrangements, are diagnostic for papillary glioneuronal tumours,1 which can be challenging to classify and thus are an essential WHO criterium for these tumours.2 

In addition, the hotspot PRKCA missense variant p.D463H is highly specific for chordoid gliomas and is considered a desirable diagnostic WHO criterium for these tumours.2

Investigation of PRKCA alteration is a core element for papillary glioneuronal tumour.
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	Core
	SHH PATHWAY ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHODd
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify
	About 30% of all medulloblastomas are characterised by SHH (sonic hedgehog) pathway activation, caused by genetic alterations in PTCH1, SUFU, SMO, or other genes encoding components of the SHH signalling pathway. 

In SHH-activated medulloblastomas, the TP53 status needs to be assessed for a precise diagnosis as this group encompasses two very different disease entities. TP53-wildtype SHH-activated medulloblastomas occur mostly in adolescents/adults and young children and are associated with a favourable prognosis if adequately treated. In contrast, TP53-mutant SHH-activated medulloblastomas typically occur in older children and have a dismal prognosis. 

A substantial subset of the SHH-activated medulloblastomas has the desmoplastic/nodular (D/N) phenotype and a small minority concerns medulloblastomas with extensive nodularity. The large cell/anaplastic (LC/A) phenotype is relatively frequent in the group of TP53-mutant SHH-activated medulloblastomas. 

SHH activation can reliably be assessed by immunohistochemical cytoplasmatic staining for the SHH target proteins GAB1 and p75NGFR. Furthermore, these medulloblastomas share expression of nuclear YAP1 with WNT-activated medulloblastomas but lack OTX2 expression as well as nuclear accumulation of β-catenin protein. DNA methylation and mRNA expression profiles can be used for detecting SHH-activated medulloblastomas as well. As germline alterations are relatively frequent in patients with SHH-activated medulloblastoma, patients with this tumour requires genetic counselling. 

The canonical inherited syndrome associated with TP53-wildtype SHH-activated medulloblastoma is naevoid basal cell carcinoma (Gorlin) syndrome, which is mostly due to inactivating germline alterations in PTCH1 (9q22.32; encoding the receptor for the SHH protein), and more rarely due to a SUFU (10q24.32) or PTCH2 (1p34.1) mutation. Germline alterations in ELP1 (9q31.3) and in GPR161 (1q24.2) have also been reported in SHH-activated medulloblastomas. More than half of the patients with a SHH-activated and TP53-mutant medulloblastomas have germline rather than somatic TP53 alterations (Li-Fraumeni syndrome). 

Widespread and strong immunohistochemical staining for p53 in an SHH-activated medulloblastomas strongly indicates a TP53-mutant tumour. Most of these tumours show cytological anaplasia, at least focally. Ideally, because of the important consequences for treatment decisions and possible germ line alterations, SHH-activated tumours should be sequenced for presence/absence of TP53 (17p13.1) alterations.1-5

Non-WNT/non-SHH medulloblastomas express OTX2 but lack staining of tumour cells for YAP1, GAB1, p75NGFR and nuclear β-catenin. Also, non-WNT/non-SHH medulloblastomas are generally not associated with genetic tumour syndromes (only rare cases have been reported in individuals with a germline alteration in CREBBP (Rubinstein–Taybi syndrome) or in the DNA repair genes PALB2 (16p12.2) or BRCA2 (13q13.1)).2

Investigation of SHH pathway alteration is a core element for medulloblastoma, SHH-activated and TP53-wildtype; medulloblastoma, SHH-activated and TP53-mutant; and medulloblastoma, non-WNT/non-SHH.
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	Core
	SMARC FAMILY ALTERATIONSc
	SMARCA4/BRG1 alteration
· Indeterminate 
· Absent 
· Present, describe sequence variant(s)
TESTING METHOD
(select all that apply)
· Sanger sequencing 
· NGS 
· PCR-based method 
· Other, specify 

BRG1 loss of expression (IHC)
· Indeterminate 
· Intact nuclear expression 
· Loss of nuclear expression

SMARCB1/INI1/SNF5 alteration
· Indeterminate 
· Absent 
· Present, describe sequence variant(s)
TESTING METHOD
(select all that apply)
· Sanger sequencing 
· NGS 
· PCR-based method 
· Other, specify 
INI1 (BAF47) loss of expression (IHC)
· Indeterminate 
· Intact nuclear expression 
· Loss of nuclear expression 
	Atypical teratoid/rhabdoid tumour (AT/RT) is defined as a CNS embryonal tumour that frequently (but not invariably) contains rhabdoid cells and demonstrates inactivation of the SMARC (SWI/SNF related, matrix associated, actin dependent regulator of chromatin) genes SMARCB1 (INI1) or SMARCA4 (BRG1). 

SMARCB1/INI1/SNF5 alterations
Inactivation of the SMARCB1 (INI1, BAF47, SNF5) gene (22q11.23) is present in almost all cases of AT/RT, resulting in nuclear loss of SMARCB1 protein which can be evaluated by IHC. Genetic aberrations of the SMARCB1 locus may include homozygous or heterozygous deletions and a variety of coding sequence variants, leading to inactivation of both alleles. However, genetic testing is usually not required for making the diagnosis of AT/RT because IHC is highly sensitive. 

Since SMARCB1 is a constitutively expressed protein, IHC staining for SMARCB1 in the nuclei of non-neoplastic cells (such as vascular and inflammatory cells) serves as an internal positive control. Some AT/RTs with nuclear loss of SMARCB1 exhibit cytoplasmic staining, possibly representing dysfunctional truncated protein. 

In tumours with histological features of AT/RTs but without demonstration of SMARCB1 or SMARCA4 alterations, a diagnosis of ‘CNS embryonal tumour with rhabdoid features, NEC’ can be made.

A variety of other tumour types that involve the nervous system may exhibit loss of nuclear SMARCB1, including cribriform neuroepithelial tumour, poorly differentiated chordoma, rhabdoid tumour of the sellar region, myxoid meningeal tumours, and sinonasal carcinoma.1 The molecular and nosologic relationship of these tumours to AT/RT is unclear. Furthermore, complete or incomplete (reduced, mosaic) loss of nuclear SMARCB1 protein expression has been found in some cases of choroid plexus carcinoma, synovial sarcoma, epithelioid schwannoma, and schwannoma associated with schwannomatosis.


SMARCA4/BRG1 alterations
The SMARCA4 gene (19p13.2) encodes the transcription activator BRG1, also known as adenosine triphosphate (ATP)-dependent chromatin remodeller SMARCA4. AT/RTs with SMARCA4 alterations are extremely rare. Loss of BRG1 expression (and retention of INI1 expression) in these tumours can be readily demonstrated by IHC. Associated genetic alterations of SMARCA4, whether copy number alterations or mutations, can be detected by a variety of array or sequencing methods.

Investigation of SMARC alteration is a core element for atypical teratoid/rhabdoid tumour; cribriform neuroepithelial tumour; poorly differentiated chordoma; and desmoplastic myxoid tumour of the pineal region, SMARCB1-mutant.
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	Core
	STAT6 ALTERATIONSc
	STAT6 expression (IHC)
· Indeterminate 
· Absence of nuclear expression 
· Positive nuclear expression
STAT6 rearrangement
· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· ISH 
· NGS 
· Other, specify
	In-frame NAB2::STAT6 gene fusions result from chromosome 12q13 inversions and represent highly sensitive and specific signature alterations of meningeal solitary fibrous tumours (SFT) of grade 1, 2, or 3. These fusions are also characteristic of the analogous soft tissue/extracranial counterparts. 

STAT6 (signal transducer and activator of transcription 6) staining of tumour cell nuclei is a highly reliable and practical surrogate for detecting this signature alteration, with nearly 100% sensitivity and specificity regardless of the fusion variant,1,2 and is listed as essential diagnostic criterion for SFT in the WHO CNS 5th edition (CNS5) Tumour Classification.3

NAB2::STAT6 gene fusion 
NAB2::STAT6 gene fusions are detectable using RT-PCR, ISH or various sequencing techniques, including NGS if designed appropriately.1,4 Over 40 fusion variants have been detected to date, with the most common meningeal SFT-associated fusions bringing together exon 6 of NAB2 (NGFI-A-binding protein 2; 2q13.3) with exons 16, 17, or 18 of STAT6 (2q13.3) in approximately half of all cases.4 

STAT6 nuclear expression (immunohistochemistry)
The STAT6 protein is normally expressed in the cytoplasm of cells, whereas NAB2 is expressed in nuclei; however, the NAB2::STAT6 fusions cause the STAT6 protein to translocate to the nucleus. Nearly all meningeal and extracranial SFTs display strong and extensive/diffuse nuclear positivity, whereas other diagnostic considerations, such as meningiomas, nerve sheath tumours, and various sarcomas, either lack expression or show only cytoplasmic staining. As such, the pathologist is cautioned against rendering a diagnosis of SFT in the absence of nuclear STAT6 immunoreactivity. 

Investigation of STAT6 alteration is a core element for solitary fibrous tumour.
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	Core
	TERT PROMOTER ALTERATIONSc
	· Indeterminate 
· Absent 
· Hotspot variant (C228T or C250T) 
· Other sequence variant, specify
TESTING METHOD
(select all that apply)
· Sanger sequencing 
· NGS 
· PCR-based method 
· Other, specify 

	The TERT (telomerase reverse transcriptase; 5p15.33) gene encodes a major component of the protein complex telomerase and contributes to maintaining telomere length. Sequence variants in the TERT promoter create new binding sites for erythroblast transformation specific transcription factors and subsequently increase expression and activity of telomerase. 

TERT promoter variants are detectable in the majority of glioblastomas, IDH-wildtype and of oligodendrogliomas, IDH-mutant and 1p/19q-codeleted, but are typically absent in astrocytomas, IDH-mutant.1,2 

In 2018, Consortium to Inform Molecular and Practical Approaches to CNS Tumour Taxonomy – Not Official WHO (cIMPACT-NOW) update 3 recommended the use of TERT promoter alteration as a molecular criterion for identifying a histologically lower grade appearing (grade 2 or 3) IDH-wildtype, adult-type diffuse astrocytic glioma as glioblastoma, IDH-wildtype (CNS WHO grade 4).3 This recommendation has been adopted by the WHO CNS 5th edition (CNS5) Tumour Classification.4 However, others have suggested using caution when assimilating IDH-wildtype, histologically grade 2 gliomas to ‘molecular glioblastomas’ in case of ‘isolated TERT promoter mutation’ (lacking EGFR amplification as well as combined gain of whole chromosome 7 and loss of whole chromosome 10).5,6 DNA methylome profiling and NGS may substantiate the diagnosis in such cases by demonstrating methylome profiles and additional genetic alterations of IDH-wildtype glioblastoma.  

Approximately 20% of medulloblastomas carry TERT promoter alterations, and they are more common in adult patients and in the SHH-activated molecular type.1 In meningiomas, TERT promoter alterations have been found in 6% of tumours where they represent a marker of poor prognosis and according to the WHO CNS5 Tumour Classification can be used to assign a CNS WHO grade 3.7 Approximately 50% of SFTs carry a TERT promoter alteration while other tumours of the CNS only uncommonly exhibit these alterations.1

Two hotspot missense variants (abbreviated as C228T and C250T) represent the vast majority of TERT promoter alterations in CNS tumours. Other variants have been rarely detected in CNS tumours, such as C228A and C249T in gliomas.1 TERT promoter variants can be detected by various molecular techniques, with Sanger sequencing, NGS and RT-PCR being most commonly used.

Investigation of TERT promoter alteration is a core element for glioblastoma, IDH-wildtype; and meningioma.
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	Core
	TP53 ALTERATIONSc
	TP53 variant
· Indeterminate 
· Absent 
· Present, describe 
EXONS ANALYSED
· Exons 5-8 
· All exons 
· Other, specify
TESTING METHOD
(select all that apply)
· Sanger sequencing 
· NGS 
· PCR-based method 
· IHC
p53 expression
· Negative or rare, lightly positive cells
· Intermediate (intermediate numbers of predominantly
lightly positive cells)
· Positive (diffuse and strong nuclear positivity)
· Other, specify 

	Sequence variants in the TP53 (tumour protein p53; 17p13.1) gene are found in a variety of cancers including >80% of IDH-mutant diffuse astrocytic gliomas.1 TP53 variants are less common in IDH-wildtype glioblastomas (23-28%) and are notably uncommon in oligodendrogliomas, IDH-mutant and 1p/19q-codeleted. 

Detection of a TP53 variant may be used to support the diagnosis of IDH-mutant astrocytoma. However, exclusion of 1p/19q codeletion and ATRX loss of expression is not sufficient to establish this diagnosis, as rare cases of usually high grade and/or recurrent oligodendroglioma, IDH-mutant and 1p/19q-codeleted may also feature TP53 variants. Furthermore, TP53 variants are important for classifying medulloblastomas, SHH pathway-activated and TP53-mutant. TP53 alterations are common in some other types of brain tumours but are not listed as essential or desirable diagnostic criterion for these latter tumours.

Different DNA sequencing techniques may be used for detecting TP53 variants, with NGS covering the entire coding sequence being most reliable, as sequence alterations tend to cluster in exons 5 to 8 but may also affect other exons. The vast majority of alterations are missense variants. 

Immunohistochemistry (IHC) is a useful screening tool, given that most TP53 missense variants result in increased p53 protein half-life that produces strong immunoreactivity in the majority of tumour cell nuclei (rather than scattered positivity and/or light nuclear staining). Strong p53 positivity in >10% of the tumour cell nuclei has been found to have a sensitivity of 77.4-78.8% and a specificity of 78.6-96.7% when compared to sequencing.2,3 Positive nuclear p53 staining correlates well with missense sequence variants with a sensitivity of 92% and a specificity of 79.4%, whereas only 33% of tumours with truncating TP53 alterations show p53 positivity,3 with such alterations typically leading to negative staining.4

Investigation of TP53 alteration is a core element for medulloblastoma, SHH-activated and TP53-wildtype; and medulloblastoma, SHH-activated and TP53-mutant.
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	Core
	TTF1 EXPRESSION (IHC)c
	· Indeterminate 
· Negative 
· Positive 

	The TTF1 (thyroid transcription factor 1; 14q13.3) protein, encoded by the homeobox gene NKX2-1 (14q13.3),1 is essential for organogenesis of the lung and thyroid gland. Furthermore, in the human embryonic and adult brain nuclear TTF1 expression appears to be restricted to the ventral forebrain and diencephalic origin structures, including normal pituicytes of the neurohypophysis,2 ependymal cells of the third ventricle and glial cells of the organum vasculosum of the lamina terminalis.3 

TTF1 nuclear expression in CNS tumours has been reported in posterior pituitary tumours including pituicytomas, spindle cell oncocytomas and granular cell tumours of the neurohypophysis, in ependymomas of the third ventricle, subependymal giant cell astrocytomas, and chordoid gliomas.2-9 In addition, glioblastomas with primitive neuronal components may express TTF1 in the embryonal, GFAP-negative tumour cell component depending which antibody clone is being utilised.10 

Investigation of TTF1 expression is a core element for pituicytoma; granular cell tumour of the sellar region; and spindle cell oncocytoma.
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	Core
	WNT PATHWAY ALTERATIONSc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHODd
(select all that apply)
· IHC
· ISH
· NGS 
· Other, specify 

	Approximately 10% of all medulloblastomas are characterised by WNT pathway activation by an activating variant in exon 3 of the CTNNB1 gene (catenin (cadherin-associated protein), beta 1; 3p22.1), or rarely, sequence variants in APC (adenomatous polyposis coli; 5q22.2) or other genes encoding components of this pathway. These medulloblastomas cannot be identified as such based on haematoxylin-eosin stained sections alone. Most of them have classic morphology. The precise identification of these tumours is important because of their favourable prognosis in the paediatric age (<16 years) under current treatment regimens, and the evaluation of possible reduction of treatment intensity.
 
Immunohistochemically, WNT-activated medulloblastomas typically show YAP1 staining of tumour nuclei, nuclear expression of OTX2, and are negative for the SHH target proteins GAB1 and p75NGFR. Furthermore, in most WNT-activated medulloblastomas at least some tumour cell nuclei are positive for β-catenin protein, but discrimination from strong cytoplasmic staining of the tumour cells may be challenging. It has been recommended to use at least two of the following methods for reliable identification of WNT-activated medulloblastomas: IHC, sequencing of CTNNB1 exon 3, methylome profiling and RNA profiling. 

Rarely, WNT-activated medulloblastomas are diagnosed within the setting of constitutional mismatch repair deficiency syndrome or in individuals with germline APC alterations and a predisposition to colon cancer, but the vast majority of these medulloblastomas are sporadic.1-4

Investigation of WNT pathway alteration is a core element for medulloblastoma, WNT-activated; and medulloblastoma, non-WNT/non-SHH.
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	Core
	YAP1 REARRANGEMENTc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· ISH
· NGS 
· Other, specify 

	In the WHO CNS 5th edition (CNS5) Tumour Classification, supratentorial ependymoma, YAP1 (yes-associated protein 1; 11q22.1) fusion-positive, has been introduced as a separate tumour type.1 Supratentorial ependymomas with YAP1 fusion are rare and mostly restricted to young children.2 

Fusions involving the YAP1 gene can be detected by a variety of methods; however, an IHC approach is currently not available. Transcriptome sequencing can detect YAP1 fused to several gene partners, such as MAMLD1 (Xq.28).2 Methods using RT-PCR or interphase ISH are alternatives.2 

Investigation of YAP1 rearrangement is a core element for supratentorial ependymoma, YAP1 fusion-positive.
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	Core
	ZFTA REARRANGEMENTc
	· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· IHC 
· ISH 
· NGS 
· Other, specify 
L1CAM expression (IHC)
· Indeterminate 
· Negative 
· Positive
RELA rearrangement
· Indeterminate 
· Absent 
· Present, describe 
TESTING METHOD
(select all that apply)
· ISH 
· NGS 
· Other, specify 

	In the WHO CNS 5th edition (CNS5) Tumour Classification, the supratentorial ependymomas formerly coined as RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A; 11q13.1) fusion-positive are now listed as supratentorial ependymoma, ZFTA (zinc finger translocation associated; 11q13.1) fusion-positive (with ZFTA being the new designation for C11orf95).1 Approximately two-thirds of supratentorial ependymomas in children are ZFTA fusion-positive, with in the vast majority of these harbouring RELA as the fusion partner.1,2 Demonstration of a ZFTA fusion is required for their diagnosis in the WHO CNS5 Tumour Classification.1 

These fusions can be identified by RNA sequencing, RT-PCR based techniques, or ISH; whole genome sequencing can also detect the fusion. Targeted RNA sequencing and RT-PCR design should take into consideration the complex nature of the fusion events generated by chromothripsis on chromosome 11. 

In situ hybridisation (ISH) probes against either ZFTA  or RELA may be used to detect chromosome 11 rearrangements.3 ZFTA fusion-positive ependymomas with or without RELA represent the same tumour entity in the WHO CNS5 Tumour Classification. It is known that a broader spectrum of tumours than classic ependymomas exhibit ZFTA fusions without RELA.4 Supratentorial ependymomas without ZFTA (and without YAP1) fusion also exist.5 

L1CAM (cytoplasmic staining) and p65 (nuclear staining) in cases with ZFTA::RELA fusions, represent surrogate IHC markers for ZFTA fusion-positive tumours. Strong and diffuse L1CAM immunopositivity is a sensitive but not a specific surrogate marker as it can also be expressed by other tumour types. Nonetheless, L1CAM IHC is recommended for indicating that a supratentorial ependymoma likely belongs to the ZFTA fusion-positive category, when fusion testing is not possible or yields equivocal results. 

Investigation of ZFTA rearrangement is a core element for supratentorial ependymoma, ZFTA fusion-positive.
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	c Only core for some tumours - refer to Tables 3-5.

	Core
	OTHER IMMUNO-HISTOCHEMISTRY FINDINGSc
	· None identified
· Present, record test(s), methodology and results
	A growing number of IHC tests represent core ICCR or essential WHO diagnostic criteria, including IHC for Brachyury, CD34, GFAP, S100, class III -tubulin, neurofilament, synaptophysin, NeuN, OLIG2, HuC/HuD, non-phosphorylated 200kDa NFP, SOX10, EMA, claudin-1, GLUT1, OCT4, KIT, CD30 loss, AFP loss, hCG, cytokeratin, inhibin, CD99, ETV6, WT1, SPDEF, CD56, -catenin and others.
[bookmark: _Hlk145957033]Practical and economical guidelines, which include a comprehensive list of IHC markers, for diagnosing CNS tumours in resource-restrained jurisdictions are being developed by the Asian Oceanian Society of Neuropathology for Adapting Diagnostic Approaches for Practical Taxonomy in Resource-Restrained Regions (AOSNP-ADAPTR).1 

To achieve ideal results, IHC should involve careful optimisation of antigen retrieval techniques and appropriate antibody selection. The inclusion of appropriate positive and negative controls, including on-slide controls, will ensure accurate and reliable results, enhance interpretation of staining patterns and minimise the risk of false-positive or false-negative findings.

Investigation of other IHC findings is a core element for supratentorial ependymoma, ZFTA fusion-positive; supratentorial ependymoma, YAP1 fusion-positive; posterior fossa ependymoma, group A; posterior fossa ependymoma, group B; spinal ependymoma; spinal ependymoma, MYCN-amplified; embryonal tumour with multilayered rosettes; choroid plexus papilloma; atypical choroid plexus papilloma; choroid plexus carcinoma; hybrid nerve sheath tumours; pineocytoma; pineal parenchymal tumour of intermediate differentiation; papillary tumour of the pineal region; and pituitary adenoma/pituitary neuroendocrine tumour.
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	c Only core for some tumours - refer to Tables 3-5.


	Non-core
	OTHER MOLECULAR FINDINGS
	· None identified
· Present, record test(s), methodology and results
	These sections should be used for documenting findings for other genetic alterations and/or for other tumour types, such as metastases and haematological lesions.

	

	Integrated Final Diagnosis Reporting Guide

	Scope of this dataset section
Integrated Final Diagnosis Reporting Guide
	This dataset section has been developed for the integrated final diagnosis of benign and malignant primary tumours of the CNS and its coverings, as well as tumours from those structures of the peripheral nervous system immediately adjacent to the CNS. The CNS dataset applies to both biopsy and resection specimens of adult and paediatric CNS tumours. Haematological lesions involving the CNS and germ cell tumours are not covered in detail as these are not the primary focus of the CNS dataset. Most sarcomas are not included and are covered by separate ICCR datasets.1,2 Secondary tumours of the CNS (for example metastatic tumours from carcinomas, sarcomas or melanomas in other organs) are not covered in this dataset. Tumours of the pituitary gland are included as the majority of these tumours are reported by neuropathologists worldwide.

This dataset section should be used in conjunction with the ICCR dataset sections on Histological assessment and Molecular information, where appropriate. 
The 2nd edition of this dataset incorporates the WHO Classification of Tumours of the CNS, 5th edition (CNS5), 2021.3 The ICCR dataset includes 5th edition Corrigenda, July 2024.4 Reports should incorporate these three dataset sections into a single layered report format (see INTEGRATED FINAL DIAGNOSIS).
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	Core
	INTEGRATED FINAL DIAGNOSIS
	Text
· Diagnosis not classified elsewhere
	All reports should strive to render a diagnosis from the WHO CNS 5th edition (CNS5) Tumour Classification,1 although it is recognised that this may not be possible in all instances (i.e., that more descriptive diagnoses may be needed for tumours that do not meet criteria for WHO CNS5 Tumour Classification entities).1,2 

In many situations, CNS WHO1 diagnoses ‘integrate’ histological and molecular information; for these entities, both histological and molecular information is needed. In this context, ’molecular’ refers to the detection of molecular alterations in nucleic acids that can be detected at the nucleic acid or protein level. In some scenarios, there may be differences between histological appearance and the WHO CNS51 diagnosis (e.g., a diffuse glioma without overt oligodendroglial features but with IDH sequence variant and 1p/19q codeletion). 

To capture this nosological heterogeneity and to provide as much clinically relevant information in each report, it is recommended that layered diagnostic formatting be utilised in reports, typically with four layers:
· Integrated diagnosis, ideally corresponding to a WHO CNS5 Tumour Classification diagnosis (as per this dataset section), and supplemented with CNS WHO grade;
· Histological appearance (as per ‘Histological assessment of CNS specimens’ dataset section);
· Molecular parameters (as per ‘Molecular information for CNS specimens’ dataset section);
· CNS WHO grade (as per ‘Histological assessment of CNS specimens’ and ‘Molecular information for CNS specimens’ dataset sections);

Increasingly, the CNS WHO grade is based on a combination of histological and molecular features. Therefore, CNS WHO grade is now more logically presented in the 4th layer (rather than in the 3rd layer as was initially proposed).3 CNS WHO grade should also be included (or purposefully omitted) in the first layer in order to increase the visibility of this parameter. 

For some entities, the WHO CNS51 diagnosis may be identical to the histological appearance (e.g., choroid plexus tumours), but for others there may be differences such as the following:
· WHO CNS5 Classification diagnosis: Diffuse astrocytoma, IDH-mutant, CNS WHO grade 4
· Histological appearance: Diffuse glioma, histologically grade 3
· Molecular parameters:
· IDH1 R132H alteration
· ATRX alteration
· TP53 alteration
· 1p/19q retention
· [bookmark: _Hlk139037100]CDKN2A/B homozygous deletion
· CNS WHO grade 4 (due to homozygous CDKN2A/B deletion)
Tables 1 and 2 (See end of the document for tables)

In the event that all diagnostic information is present but the tumour still does not meet criteria for a tumour type defined by the 2021 WHO CNS5 Tumour Classification,1 a ‘descriptive’ or ‘not elsewhere classified’ (NEC) diagnosis can be issued, which draws attention to the unusual nature of the lesion. Such designations are distinct from ‘not otherwise specified’ (NOS) diagnoses, which are cases in which necessary diagnostic information is not available (e.g., in the case of resource-limited settings, limited tissue volume that was exhausted before molecular testing could be performed, or unreliable results of molecular testing).6 
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	Core 
	TUMOUR GRADE
	· Not applicable 
· CNS World Health Organization (WHO) grade 1 
· CNS WHO grade 2 
· CNS WHO grade 3 
· CNS WHO grade 4 
· Cannot be determined, specify
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	Core
	INTEGRATED FINAL DIAGNOSIS BASED ON
	(Select all that apply)
· CNS WHO Tumour Classification 
· Histology 
· CNS WHO grade - refer to TUMOUR GRADE 
· Immunohistochemistry 
· Molecular findings
	The final integrated diagnosis is a core element and may be based on the following information: 
· CNS WHO Tumour Classification
· Histology
· Immunohistochemistry
· Molecular findings
· CNS WHO grade (refer to TUMOUR GRADE).
Pathology reports optimally include an integrated assessment of all available information in a layered diagnostic format.
	





Tables 

Table 1. World Health Organization classification and grade of central nervous system tumours.2 
	Descriptor
	ICD-O codesa
	CNS WHO Grade

	Gliomas, glioneuronal tumours and neuronal tumours
	
	

	Adult-type diffuse gliomas
	
	

	Astrocytoma, IDH-mutant
	9400/3, 9401/3, 9445/3
	2, 3, or 4

	Oligodendroglioma, IDH-mutant and 1p/19q-codeleted
	9450/3, 9451/3
	2 or 3

	Glioblastoma, IDH-wildtype
	9440/3
	4

	Paediatric-type diffuse low grade gliomas
	
	

	Diffuse astrocytoma, MYB- or MYBL1-altered
	9421/1
	1

	Angiocentric glioma 
	9431/1
	1

	Polymorphous low grade neuroepithelial tumour of the young
	9413/0
	1

	Diffuse low grade glioma, MAPK pathway-altered
	9421/1
	n/a

	Paediatric-type diffuse high grade gliomas
	
	

	Diffuse midline glioma, H3 K27-altered
	9385/3
	4

	Diffuse hemispheric glioma, H3 G34-mutant
	9385/3
	4

	Diffuse paediatric-type high grade glioma, H3-wildtype and IDH-wildtype
	9385/3
	4

	Infant-type hemispheric glioma
	9385/3
	n/a

	Circumscribed astrocytic gliomas
	
	

	Pilocytic astrocytoma 
	9421/1
	1

	High grade astrocytoma with piloid features
	9421/3
	n/a

	Pleomorphic xanthoastrocytoma 
	9424/3
	2 or 3

	Subependymal giant cell astrocytoma 
	9384/1
	1

	Chordoid glioma
	9444/1
	2

	Astroblastoma, MN1-altered 
	9430/3
	n/a

	Glioneuronal and neuronal tumours
	
	

	Ganglioglioma 
	9505/1
	1

	Gangliocytoma 
	9492/0
	1

	Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma 
	9412/1
	1

	Dysembryoplastic neuroepithelial tumour 
	9413/0
	1

	Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters*
	
	n/a

	Papillary glioneuronal tumour 
	9509/1
	1

	Rosette-forming glioneuronal tumour 
	9509/1
	1

	Myxoid glioneuronal tumour
	9509/1
	1

	Diffuse leptomeningeal glioneuronal tumour 
	9509/3
	n/a

	Multinodular and vacuolating neuronal tumour
	9509/0
	1

	Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) 
	9493/0
	1

	Central neurocytoma 
	9506/1
	2

	Extraventricular neurocytoma 
	9506/1
	2

	Cerebellar liponeurocytoma 
	9506/1
	2

	Ependymal tumours 
	
	

	Supratentorial ependymoma
	9391/3
	2 or 3

	Supratentorial ependymoma, ZFTA fusion-positive
	9396/3
	2 or 3†

	Supratentorial ependymoma, YAP1 fusion-positive
	9396/3
	n/a

	Posterior fossa ependymoma
	9391/3
	2 or 3

	Posterior fossa group A (PFA) ependymoma
	9396/3
	2 or 3†

	Posterior fossa group B (PFB) ependymoma
	9396/3
	2 or 3†

	Spinal ependymoma
	9391/3
	2 or 3†

	Spinal ependymoma, MYCN-amplified
	9396/3
	n/a

	Myxopapillary ependymoma
	9394/1
	2

	Subependymoma
	9383/1
	1

	Choroid plexus tumours
	
	

	Choroid plexus papilloma
	9390/0
	1

	Atypical choroid plexus papilloma 
	9390/1
	2

	Choroid plexus carcinoma 
	9390/3
	3

	Embryonal tumours
	
	

	Medulloblastomas, molecularly defined
	
	

	Medulloblastoma, WNT-activated
	9475/3
	4†

	Medulloblastoma, SHH-activated and TP53-wildtype
	9471/3
	4

	Medulloblastoma, SHH-activated and TP53-mutant
	9476/3
	4

	Medulloblastoma, non-WNT/non-SHH
	9477/3
	n/a

	Medulloblastomas, histologically defined
	
	

	Medulloblastomas, histologically defined
	9470/3
	n/a

	Other CNS embryonal tumours
	
	

	Atypical teratoid/rhabdoid tumour
	9508/3
	4

	Cribriform neuroepithelial tumour*
	
	n/a

	Embryonal tumour with multilayered rosettes
	9478/3
	4

	CNS Neuroblastoma, FOXR2-activated
	9500/3
	4

	CNS tumour with BCOR internal tandem duplication
	9500/3
	n/a

	CNS Embryonal tumour NEC/NOS	
	9473/3
	n/a

	Pineal tumours
	
	

	Pineocytoma
	9361/1
	1

	Pineal parenchymal tumour of intermediate differentiation 
	9362/3
	2 or 3

	Pineoblastoma 
	9362/3
	4

	Papillary tumour of the pineal region 
	9395/3
	2 or 3

	Desmoplastic myxoid tumour of the pineal region, SMARCB1-mutant*
	
	n/a

	Cranial and paraspinal nerve tumours
	
	

	Schwannoma
	9560/0
	1

	Neurofibroma 
	9540/0
	1

	Perineurioma
	9571/0
	1

	Hybrid nerve sheath tumour
	9563/0
	n/a

	Malignant melanotic nerve sheath tumour
	9540/3
	n/a

	Malignant peripheral nerve sheath tumour
	9540/3
	n/a

	Cauda equina neuroendocrine tumour (previously paraganglioma)
	8693/3
	1†

	Meningioma
	
	

	Meningioma
	9530/0
	1, 2 or 3

	Mesenchymal, non-meningothelial tumours involving the CNS
	
	

	Fibroblastic and myofibroblastic tumours
	
	

	Solitary fibrous tumour
	8815/1
	1, 2 or 3†

	Vascular tumours
	
	

	Hemangiomas and vascular malformations
	9121/0, 9131/0, 9123/0
	n/a

	Haemangioblastoma 
	9161/1
	1

	Skeletal muscle tumours
	
	

	Rhabdomyosarcoma 
	8910/3
	n/a

	Tumours of uncertain differentiation
	
	

	Intracranial mesenchymal tumour, FET::CREB fusion-positive
	
	n/a

	CIC-rearranged sarcoma
	9367/3
	4†

	Primary intracranial sarcoma, DICER1-mutant
	9480/3
	n/a

	Ewing sarcoma
	9364/3
	4†

	Chondrogenic tumours
	
	

	Mesenchymal chondrosarcoma
	9240/3
	n/a

	Chondrosarcoma
	9220/3
	1, 2 or 3†

	Notochordal tumours
	
	

	Chordoma
	9370/3
	n/a

	Melanocytic tumours
	
	

	Diffuse meningeal melanocytic neoplasms
	
	

	Meningeal melanocytosis
	8728/0
	n/a

	Meningeal melanomatosis
	8728/3
	n/a

	Circumscribed meningeal melanocytic neoplasms
	
	

	Meningeal melanocytoma
	8728/1
	n/a

	Meningeal melanoma
	8720/3
	n/a

	Tumours of the sellar region
	
	

	Adamantinomatous craniopharyngioma
	9351/1
	1†

	Papillary craniopharyngioma
	9352/1
	1†

	Pituicytoma, granular cell tumour of the sellar region, and spindle cell oncocytoma
	9432/1, 9582/0, 8290/0
	n/a

	Pituitary adenoma/pituitary neuroendocrine tumour
	8272/3
	n/a

	Pituitary blastoma
	8273/3
	n/a



a These morphology codes are from the International Classification of Diseases for Oncology, Third Edition, second revision (ICD-O-3.2).8 Behaviour is coded /0 for benign tumours; /1 for unspecified, borderline, or uncertain behaviour; /2 for carcinoma in situ and grade III intraepithelial neoplasia; and /3 for malignant tumours, primary site; and /6 for malignant tumours, metastatic site. Subtype labels are indented. Incorporates all relevant changes from the 5th edition Corrigenda, July 2024.9 

CNS WHO grades marked ‘n/a’ do not have grade included in the tumour definition. 

*Provisional entity.

† These CNS WHO grades are described in the chapter but not in the definition.
© World Health Organization/International Agency for Research on Cancer. Reproduced with permission.
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Table 2. World Health Organization classification of haematological tumours involving the central nervous system.3 
	Descriptor
	ICD-O codesa

	Lymphomas
	

	Lymphomas with predominant primary CNS presentation
	

	Primary large B-cell lymphoma of the CNS 
	9680/3

	Lymphomas arising in immune deficiency/dysregulation
	

	Lymphomatoid granulomatosis
	9766/1, 9766/3

	Intravascular large B-cell lymphoma
	9712/3

	Extranodal NK/T-cell lymphoma
	9712/3

	Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (EMZL) of the dura
	9699/3

	Lymphoplasmacytic lymphoma (Bing-Neel syndrome)
	9671/3

	Other rare lymphomas with predominant primary CNS presentation
	

	Other indolent B-cell lymphomas of the CNS
	9690/3, 9823/3

	Other aggressive B-cell lymphomas
	9687/3

	Peripheral T-cell lymphoma, NOS
	9702/3

	ALK-negative and ALK-positive anaplastic large cell lymphoma
	9715/3, 9714/3

	Histiocytic tumours
	

	Erdheim-Chester disease
	9749/3

	Rosai-Dorfman disease
	9749/3

	Juvenile xanthogranuloma
	9749/1

	Langerhans cell histiocytosis
	9751/1

	Histiocytic sarcoma
	9755/3

	ALK-positive histiocytosis
	9750/3



a These morphology codes are from the International Classification of Diseases for Oncology, Third Edition, second revision (ICD-O-3.2).8 Behaviour is coded /0 for benign tumours; /1 for unspecified, borderline, or uncertain behaviour; /2 for carcinoma in situ and grade III intraepithelial neoplasia; and /3 for malignant tumours, primary site; and /6 for malignant tumours, metastatic site. Subtype labels are indented. 
© World Health Organization/International Agency for Research on Cancer. Reproduced with permission.
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[bookmark: Tables_1_3]Table 3. Molecular and immunohistochemical alterations listed as essential or desirable diagnostic criteria for gliomas, glioneuronal and neuronal tumours in the 2021 World Health Organization Classification of Tumours of the Central Nervous System.1#
Note: Alterations in bold correspond to core ICCR/essential WHO criteria; non-bold alterations correspond to non-core ICCR/desirable WHO criteria. Alterations in [brackets] are not derived from the tables of essential or desirable WHO CNS5 Tumour Classification criteria but are considered important predictive or prognostic markers by the ICCR CNS DAC. Refer to the hyperlinked specific notes for further details on core criteria. Refer to the 2021 WHO CNS5 Tumour Classification for full diagnostic criteria.1
	TUMOUR FAMILY/tumour type
	Alterations

	ADULT-TYPE DIFFUSE GLIOMAS

	   Astrocytoma, IDH-mutant
	IDH1 p.R132a or IDH2 p.R172a; ATRXb,c or exclusion of chr 1p/19qd; [CDKN2A/Be]; TP53c,f; MP

	   Oligodendroglioma, IDH-mutant and 1p/19q-codeleted
	IDH1 p.R132a or IDH2 p.R172a; chr 1p/19qd; MP, ATRXf, TERT promoterc

	   Glioblastoma, IDH-wildtype
	IDHwt/H3wt; TERT promoterc or EGFRg or chr +7/-10h; MP; [MGMT promoter methylation] 

	PAEDIATRIC-TYPE DIFFUSE LOW GRADE GLIOMAS 

	Diffuse astrocytoma, MYB- or MYBL1-altered
	IDHwt/H3wt; MYBi/MYBL1i or MP; absence of OLIG2f and MAP2f

	Angiocentric glioma
	MYBi; MP

	Polymorphous low grade neuroepithelial tumour of the young (PLNTY)
	CD34f; IDHwt; BRAF p.V600f,j or FGFR2k/FGFR3k or other MAPK pathway alteration; absence of 1p/19qd; [MP]

	Diffuse low grade glioma, MAPK pathway-altered
	MAPK pathway alteration; IDHwt; H3wt; absence of CDKN2Ae; MP 

	PAEDIATRIC-TYPE DIFFUSE HIGH GRADE GLIOMAS

	Diffuse midline glioma, H3K27-altered
	H3 p.K28me3 (K27me3b); H3 p.K28M (K27Mc)/pK28I (K27Ic) or EGFRc,g or EZHIPl or MP; discrimination of H3.1 or H3.2 versus H3.3 p.K28 (K27)-mutant subtypes

	Diffuse hemispheric glioma, H3G34-mutant
	H3F3A p.G35 (G34Rj or G34Vj); (for unresolved lesions) MP; ATRXb, diffuse p53f; OLIG2f; 

	Diffuse paediatric-type high grade glioma, H3- and IDH-wildtype
	IDHwt; H3wt; MP or PDGFRAc,g/EGFRc,g/MYCNg; H3 p.K28me3 (K27me3) retained

	Infant-type hemispheric glioma
	RTK family member abnormality e.g., NTRK family gene, ROS1k, METk, ALKk or MP

	CIRCUMSCRIBED ASTROCYTIC GLIOMAS 

	Pilocytic astrocytoma
	MAPK pathway alteration, such as BRAFc,j,k most frequent KIAA1549::BRAF; [NF1j, FGFR1j,k; NTRK1/2/3k; MP]

	High grade astrocytoma with piloid features
	MP; MAPK pathway alteration e.g., NF1b,c, BRAFk esp. KIAA1549::BRAF, FGFR1c; CDKN2A/Bc,e or CDK4g; ATRXb,c

	Pleomorphic xanthoastrocytoma
	MAPK pathway alteration (e.g., BRAF p.V600j, BRAFc,k, NTRK1/2/3, RAF1, NF1), combined with CDKN2A/Be; MP

	Subependymal giant cell astrocytoma
	GFAPf; S100f; variable neuronal markersf e.g., class III -tubulinf, neurofilamentf, synaptophysinf, NeuNf; TTF1f, tuberinb, harmarinb, phosphorylated S6f, TSC1c or TSC2c; MP

	Chordoid glioma
	TTF1f, PRKCA p.D463Hc or MP

	Astroblastoma, MN1-altered
	MN1h; (for unresolved lesions) MP; GFAPf, EMAf , [BEND2k]

	GLIONEURONAL AND NEURONAL TUMOURS

	Ganglioglioma
	BRAFc,j,k or other MAPK pathway alteration e.g., RAF1k, KRASj, NF1b,j or (for unresolved lesions) MP; absence of IDHc

	Gangliocytoma
	-

	Desmoplastic infantile ganglioglioma
	MP or RAFc,k or RAF1c,k in the absence of CDKN2A/Be

	Dysembryoplastic neuroepithelial tumour
	FGFR1a,k,m or (for unresolved lesions) MP 

	Diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters*†
	MP; OLIG2f; synaptophysinf; GFAPb; chr 14n

	Papillary glioneuronal tumour
	PRKCAk (mostly SLC44A1::PRKCA); (for unresolved lesions) MP 

	Rosette-forming glioneuronal tumour
	(for unresolved lesions) MP; FGFR1c with PIK3CAc and/or NF1c

	Myxoid glioneuronal tumour
	PDGFRA p.K385j; PDGFRAc; MP

	Diffuse leptomeningeal glioneuronal tumour‡
	OLIG2f; synaptophysinf; chr 1pd; MAPK alteration, mostly BRAFk such as KIAA1549::BRAF; (for unresolved lesions) MP 

	Multinodular and vacuolating neuronal tumour
	Synaptophysin,f HuC/HuDf or non-phosphorylated 200kDa NFPf; OLIG2f; internexin Af, NeuNb or chromograninb, MAPK alteration esp. MAP2K1c,; FGFR2k; BRAFc

	Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease)
	PTENb,c

	Central neurocytoma
	Synaptophysinf; (for unresolved lesions) MP 

	Extraventricular neurocytoma
	Absence of IDHh; Synaptophysinf; (for unresolved lesions) MP; FGFR1 alteration, mostly  FGFR1::TACC1, [FGFR3k]

	Cerebellar liponeurocytoma
	Synaptophysinf; (for unresolved lesions) MP; focal GFAPf 

	EPENDYMAL TUMOURS 

	Supratentorial ependymoma, ZFTA fusion-positive
	IHC features of ependymoma; ZFTA (C11orf95k) mostly ZFTA::RELA; MP, p65 (RELAf) or L1CAMf

	Supratentorial ependymoma, YAP1 fusion-positive
	IHC features of ependymoma; YAP1k; MP, negative for p65 (RELA)f or L1CAMf

	Posterior fossa ependymoma, group A (PFA)
	IHC features of ependymoma; MP or global reduction of H3 p.K28me3 (K27me3f) in tumour cell nuclei; stable genome on genome-wide copy-number analysis

	Posterior fossa ependymoma, group B (PFB)
	IHC features of ependymoma; MP; chromosomal instability and aneuploidy on genome-wide copy-number analysis, retained H3 p.K28me3 (K27me3f) in tumour cell nuclei 

	Spinal ependymoma
	IHC features of ependymoma; MP, 22qd, absence of MYCNg

	Spinal ependymoma, MYCN-amplified
	IHC features of ependymoma; MYCNg; MP

	Myxopapillary ependymoma
	GFAPf; (for unresolved lesions) MP 

	Subependymoma
	(for unresolved lesions) MP 


MP – Methylome profiling; IHC – immunohistochemistry; MAPK – Mitogen-activated protein kinase; wt wildtype; a missense mutation/variant; b loss/absence of expression; c mutation/variant; d combined whole-arm deletion; e homozygous deletion; f expression; g gene amplification; h copy number alteration; i structural variant; j hotspot mutation/variant; k gene fusion; l overexpression; m internal tandem duplication; n monosomy. * Provisional tumour type; † Methylation profiling is so far the only method to clearly identify diffuse glioneuronal tumour with oligodendroglioma-like features and nuclear clusters, but if not available, morphological features may provide an approximation; ‡ This tumour type shows molecular overlap with pilocytic astrocytoma (KIAA1549::BRAF fusion) and oligodendroglioma (1p/19q codeletion). All diffuse leptomeningeal glioneuronal tumours are wildtype in IDH1 and IDH2.
Of note, this list of alterations is not exhaustive, and some of the alterations are generally mutually exclusive (e.g., IDH1 versus IDH2 variant), while others can occur in combination in the same tumour (e.g., TERT promoter variant, EGFR amplification, and +7/-10). Furthermore, while this table lists the alterations, demonstration of lack of particular alteration(s) can also be essential to establish the correct diagnosis (e.g., absence of complete 1p/19q codeletion in IDH-mutant astrocytomas). 
# Modified from Table 1 in Sahm et al. Molecular diagnostic tools for the WHO 2021 classification of gliomas, glioneuronal and neuronal tumours; an EANO guideline (licenced under CC-BY-NC 4.0).6 This table does not represent a diagnostic algorithm and one should refer to the WHO CNS5 Tumour Classification on how to use this information.1
Reference
1	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 



Table 4. Molecular and immunohistochemical alterations listed as essential and desirable diagnostic criteria for embryonal tumours in the 2021 World Health Organization Classification of Tumours of the Central Nervous System.1
Note: Alterations in bold correspond to core/essential WHO criteria; non-bold alterations correspond to non-core/desirable WHO criteria. Refer to the hyperlinked specific notes for further details on core criteria. Refer to the 2021 WHO CNS5 Tumour Classification for full diagnostic criteria.1
	TUMOUR FAMILY/tumour type
	Alterations

	MEDULLOBLASTOMA, MOLECULARLY DEFINED 

	Medulloblastoma, WNT-activated
	WNT pathway activation or MP

	Medulloblastoma, SHH-activated and TP53-wildtype
	SHH pathway activation or MP; TP53wt

	Medulloblastoma, SHH-activated and TP53-mutant
	SHH pathway activation or MP; TP53a

	Medulloblastoma, non-WNT/non-SHH
	No WNT or SHH pathway activation or MP 

	OTHER CNS EMBRYONAL TUMOURS 

	Atypical teratoid/rhabdoid tumour
	SMARCB1/SMARCA4b or (for unresolved lesions) MP; SMARCB1c; SMARCA4c

	Cribriform neuroepithelial tumour*
	SMARCB1b; EMAd

	Embryonal tumour with multilayered rosettes (ETMR)
	IHC features of ETMR; C19MCc or DICER1a; (for unresolved lesions) MP 

	CNS neuroblastoma, FOXR2-activated
	FOXR2e,f or (for unresolved lesions) MP 

	CNS tumour with BCOR internal tandem duplication
	BCOR exon 15g; (for unresolved lesions) MP 

	CNS embryonal tumour, NEC/NOS
	Neuronal markersd; absence of glial markersd


MP – Methylome profiling; IHC – immunohistochemistry; ETMR – embryonal tumour with multilayered rosettes; wt wildtype; a mutation/variant; b loss/absence of expression; c alteration; d expression; e structural variant; f gene fusion; g internal tandem duplication.
* Provisional tumour type.
Reference
1	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 

Table 5. Molecular and immunohistochemical alterations listed as essential or desirable diagnostic criteria for other central nervous system tumours in the 2021 World Health Organization Classification of Tumours of the Central Nervous System.1
Note: Alterations in bold correspond to WHO essential criteria; non-bold alterations correspond to WHO desirable criteria. Alterations in [brackets] are not derived from the tables of essential or desirable WHO CNS5 Tumour Classification criteria but are considered important predictive or prognostic markers by the ICCR CNS DAC. Refer to the hyperlinked specific notes for further details on core criteria. Refer to the 2021 WHO CNS5 Tumour Classification for full diagnostic criteria.1
	TUMOUR FAMILY/tumour type
	Alterations

	CHOROID PLEXUS TUMOURS

	Choroid plexus papilloma
	IHC features of choroid plexus differentiation

	Atypical choroid plexus papilloma
	IHC features of choroid plexus differentiation; in select cases: hyperploidy by genome-wide chromosomal copy-number analysis

	Choroid plexus carcinoma
	IHC features of choroid plexus differentiation; TP53a; MP; in select cases: demonstration of hypoploidy by genome-wide chromosomal copy-number analysis

	CRANIAL & SPINAL NERVE TUMOURS 

	Schwannoma
	S100b or SOX10b; absence of lattice-like CD34b; SMARCB1c (INI1) in epithelioid schwannoma or mosaic pattern of SMARCB1b (INI1) in syndrome associated schwannoma

	Neurofibroma
	 S100b; lattice-like CD34b; p16c in particular in the NF1 related subgroup

	Perineurioma
	EMAb or claudin-1b or GLUT1b; absence of S100b

	Hybrid nerve sheath tumours
	IHC for intermingled features of two types of benign nerve sheath tumours

	Malignant melanotic nerve sheath tumour
	S100/SOX10b; melanocytic markersb (e.g., HMB45, melan-A) or PRKAR1A2a,c; (for unresolved lesions) MP 

	Malignant peripheral nerve sheath tumour
	No more than focal/patchy S100/SOX10b; absence of SS18::SSX1/SSX2/SSX3d# or PRC2 inactivation (molecularly or via H3 p.K28me3c) or (for unresolved lesions) MP; absence of H3 p.K28me3b,c; neurofibrominc

	Cauda equina neuroendocrine tumour (previously paraganglioma)
	Synaptophysinb or chromograninb in chief cells; (for unresolved lesions) MP; S100b in sustentacular cells; cytokeratinb in chief cells, reticulin silver stain

	GERM CELL TUMOURS 

	Mature teratoma
	 -

	Immature teratoma
	 -

	Teratoma with somatic-type malignancy
	 -

	Germinoma
	Nuclear OCT4b; widespread membranous KITb or podoplaninb (D2-40) or absence of 5-methylcytosineb; absence of CD30b; absence of AFPb; hCGb

	Embryonal carcinoma
	CD30b; nuclear OCT4b; absent or focal KITb; absence of hCGb; absence of AFPb; cytokeratinb

	Yolk sac tumour
	AFPb; absent or focal non-membranous KITb; absent or focal CD30b; absence of -hCGb

	Choriocarcinoma
	-hCGc; absence of KITb or absence of podoplaninb (D2-40); absence of AFPb; absence of OCT4b

	Mixed germ cell tumour
	 -

	MELANOCYTIC TUMOURS 

	Meningeal melanocytosis/meningeal melanomatosis
	In children often NRASa; rarely BRAFa

	Meningeal melanocytoma/meningeal melanoma
	GNAQa; GNA11a; PLCB4a or CYSLTR2a (for corroborating CNS origin of the neoplasm); SF3B1a, EIFAXa, BAP1a, chr 3e, complex copy-number variations (as an indicator of aggressive behaviour)

	MENINGIOMAS 

	Meningioma
	[TERT promotera; CDKN2A/Bc features of CNS WHO grade 3 meningioma]; MP; demonstration of biallelic inactivation of NF2 or alterations in other drivers of conventional meningioma (TRAF7, AKT1, KLF4, SMO, PIK3CA, SMARCE1 in clear cell meningioma, BAP1 in rhabdoid meningioma); EMAb; SSTR2Ab; chr. 22/22q in lower grade meningiomaf; loss of chr. 1p; chr. 6; chr. 10q; chr. 14q; chr. 18 in higher grade meningioma

	MESENCHYMAL, NON-MENINGOTHELIAL TUMOURS 

	Solitary fibrous tumour
	STAT6b; NAB2::STAT6d 

	Haemangiomas and vascular malformations
	-

	Hemangioblastoma
	Inhibinb; loss or inactivation of VHLa,c,#; absence of IHC staining for markers of renal cell carcinoma

	Intracranial mesenchymal tumour, FET::CREB fusion-positive
	FET::CREBd; CD99b; EMAb; desminb

	CIC-rearranged sarcoma
	CICd; CD99b; ETV4b; WT1b; MP

	Primary intracranial sarcoma, DICER1-mutant
	DICER1a; (for unresolved lesions) MP 

	Ewing sarcoma
	Diffuse and membranous CD99b; FET::ETSd; NKX2-2b; PAX7b

	Chordoma
	Brachyuryb; in poorly differentiated chordoma SMARCB1c (INI1) 

	PINEAL TUMOURS 

	Pineocytoma
	IHC for pineal parenchymal differentiation e.g., synaptophysinb

	Pineal parenchymal tumour of intermediate differentiation
	IHC for pineal parenchymal differentiation e.g., synaptophysinb; (for unresolved lesions) MP; KBTBD4g

	Pineoblastoma
	SMARCB1b (INI1); MP

	Papillary tumour of the pineal region
	Characteristic IHC e.g., cytokeratinsb, SPDEFb, CD56b; MP

	Desmoplastic myxoid tumour of the pineal region, SMARCB1-mutant*
	SMARCB1c; (for unresolved lesions) MP 

	TUMOURS OF THE SELLAR REGION 

	Adamantinomatous craniopharyngioma
	Nuclear -cateninb; CTNNB1a; absence of BRAF p.V600Ea

	Papillary craniopharyngioma
	BRAF p.V600Ea, b; absence of nuclear -cateninb; absence of CTNNB1a 

	Pituicytoma
	TTF1b; absence of pituitary hormoneb and hormone transcription factorb; absence of neuronal and neuroendocrine markerb

	Granular cell tumour of the sellar region
	TTF1b; absence of pituitary hormoneb and hormone transcription factorb; absence of neuronal and neuroendocrine markerb; CD68b or 1-antitrypsinb

	Spindle cell oncocytoma
	TTF1b; absence of pituitary hormoneb and hormone transcription factorb; absence of neuronal and neuroendocrine markerb; antimitochondrial antigenb

	Pituitary adenoma/Pituitary neuroendocrine tumour
	IHC for pituitary hormones and/or lineage-specific transcription factors; Ki-67b (MIB1), [cytokeratins]

	Pituitary blastoma
	DICER1h


MP – Methylome profiling; IHC – immunohistochemistry; a mutation/variant; b expression; c loss/absence of expression; d gene fusion; e monosomy; f copy number alteration; g insertion; h alteration. 
* Provisional tumour type, # VHL and absence of SS18::SSX1/SSX2/SSX3 have been designated non-core alterations by the ICCR CNS DAC.
Mesenchymal chondrosarcoma and chondrosarcoma are not included as they are covered in the ICCR Soft tissue sarcoma datasets.7,8

Reference
1	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 



Table 6. Genetic central nervous system (CNS) tumour syndromes and alterations from the 2021 World Health Organization Classification of Tumours of the CNS.1
	Genetic tumour syndromes
	Genes involved (chromosomal location)
	Tumours of the nervous system

	Neurofibromatosis type 1
	NF1 (17q11.2)a
	Neurofibroma; ANNUBP; hybrid neurofibroma/schwannoma; MPNST; pilocytic astrocytoma; other gliomas

	Neurofibromatosis type 2
	NF2 (22q12.2)a
	(Bilateral) schwannoma; meningioma; spinal ependymoma; hybrid neurofibroma/schwannoma;

	Schwannomatosis
	SMARCB1 (22q11.23)a or LZTR1 (22q11.21)a; and NF2 (22q12.2)a 
(‘four-hit, three-step mechanism’)
	Schwannoma; meningioma; hybrid neurofibroma/schwannoma; MPNST

	Von Hippel-Lindau syndrome
	VHL (3p25.3)a
	Hemangioblastoma

	Tuberous sclerosis
	TSC1 (9q34.13)a or TSC2 (16p13.3)a
	Subependymal giant cell astrocytoma

	Li-Fraumeni syndrome
	TP53 (17p13.1)a,d,e
	Choroid plexus carcinoma; IDH-wildtype glioblastoma; IDH-mutant astrocytoma, medulloblastoma

	Cowden syndrome
	PTEN (10q23.31)a
	Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease)

	CMMRD syndrome, Lynch syndrome
	PMS2 (7p22.1)a,e or MSH12 (2p21)a,e; or MSH6 (2p16.3)a,e or MLH1 (3p22.2)a,e; genomic profiling of MMRD; absence of MMRf , POLEa etc.
	IDH-wildtype high grade glioma; IDH-mutant astrocytoma; medulloblastoma

	Familial adenomatous polyposis 1
	APC (5q22.2)a 
	Medulloblastoma, WNT-activated 

	Nevoid basal cell carcinoma syndrome
	PTCH1 (9q22.32)a, [PTCH2 (1p34.1)a] or SUFU (10q24.32)a
	Medulloblastoma, SHH-activated

	Rhabdoid tumour predisposition syndrome
	SMARCB1 (22q11.23)/SMARCA4 (19p13.2)a
	Atypical teratoid/rhabdoid tumour

	Carney complex
	Inactivating PRKAR1A (17q24.2)a
	Malignant melanotic nerve sheath tumour

	DICER1 syndrome
	DICER1 (14q32.13)a; DICER1a,c involving remaining allele
	Pituitary blastoma; pineoblastoma; ciliary body medulloepithelioma; DICER1-associated CNS sarcoma; ETMR-like infantile cerebellar embryonal tumour

	Familial paraganglioma syndrome
	Germline susceptibility gene variant; SDHB (1p36.13)g (high predictive value for SDHB/C/Da)
	Paraganglioma

	Melanoma-astrocytoma syndrome
	CDKN2A/2B (9p21.3)a 
	Pleomorphic xanthoastrocytoma, low grade diffuse astrocytoma; IDH—wildtype glioblastoma; schwannoma; neurofibroma

	Familial retinoblastoma
	RB1 (13q14.2)h
	Retinoblastoma; pineoblastoma

	BAP1 tumour predisposition syndrome
	BAP1 (3p21.1)a
	Meningioma, rhabdoid or papillary

	Fanconi anaemia
	Positive chr breakage analysis (diepoxybutane test); FANCa
	Medulloblastoma

	ELP1-medulloblastoma syndrome
	ELP1 (9q31.3)h 
	Medulloblastoma, SHH-activated


ANNUBP – Atypical neurofibromatosis neoplasm with uncertain biologic potential; MPNST – Malignant peripheral nerve sheath tumour; CMMRD – Constitutional mismatch repair deficiency; MP – Methylome profiling; wt wildtype; a mutation/variant; b combined whole-arm deletion; c loss of heterozygosity; d structural variant; e partial/complete deletion; f expression; g loss/absence of expression; h alteration. 
For more information refer to the 2021 WHO CNS5 Tumour Classification.1
Reference
1	WHO Classification of Tumours Editorial Board (2021). Central Nervous System Tumours, WHO Classification of Tumours, 5th Edition, Volume 6. IARC Press, Lyon, France. 
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